

# How light bulbs with different voltage need different energy levels for it to light the brightest

By Lana Z, Gr.5



If the light bulb has **higher voltage**, then it would require **more force and speed** because we need **more electricity** to light up the light bulb.





## Research

**Electricity** is energy that is used to power up homes and cities.

To light a light bulb, there must be a **closed circuit**.

A closed circuit needs to have an **electricity supply, conductors** and a **light bulb**.

The light bulb will tell you if the circuit is **closed or not**.



There are two types of circuits: series circuit and parallel circuit.



In my experiment, I used a **dynamo with a hand cranker** as my electricity supply instead of a battery.



When you spin the hand cranker, the magnet in the dynamo will rotate which creates kinetic energy. Using the **properties of electromagnetism**, it will convert the **kinetic energy into electrical energy**, also known as electricity, which will flow through the **copper wires** and **light up** the light bulb.

## **Circuit diagram**

Using properties of electromagnetism converts kinetic energy to electricity



#### Dynamo with hand cranker and with two terminals

![](_page_4_Picture_1.jpeg)

Voltmeter with positive and negative terminals

![](_page_4_Picture_3.jpeg)

![](_page_4_Picture_4.jpeg)

![](_page_4_Picture_5.jpeg)

3 light bulbs with different voltage but the same ampere

![](_page_4_Picture_7.jpeg)

![](_page_4_Picture_9.jpeg)

Lamp socket with two terminals

![](_page_5_Picture_0.jpeg)

![](_page_5_Figure_1.jpeg)

![](_page_6_Picture_0.jpeg)

## Procedures (1 / 4)

#### Preparing the circuit

- 1. Connect the red terminal of the dynamo to the positive terminal of the voltmeter using one copper wire
- 2. Connect the black terminal of the dynamo to the negative terminal of the voltmeter using one copper wire
- 3. Connect one terminal of the dynamo to one terminal of the lamp socket using one copper wire
- 4. Connect the other terminal of the dynamo to the other terminal of the lamp socket using one copper wire

Note: There are two wires on each terminal of the dynamo. This will create a parallel circuit

5. Add Light Bulb C to the lamp socket. Twist the light bulb until it tightens and the bottom touches the metal plate

### This is what the circuit looks like

![](_page_7_Picture_1.jpeg)

![](_page_7_Picture_2.jpeg)

![](_page_8_Picture_0.jpeg)

# Procedures (2 / 4)

#### Experiment

- 1. Spin the hand cranker that is on the dynamo in a clockwise direction
- 2. Spin the hand cranker until the voltmeter reads 1 volt
- 3. Observe the brightness of the light bulb and record your observations
- 4. Spin the hand cranker faster until the voltmeter reads 2 volts
- 5. Observe the brightness of light bulb and record your observation
- 6. Spin the hand cranker even faster until the voltmeter reads 3 volts
- 7. Observe the brightness of the light bulb and record your observations
- 8. Repeat the steps above with Light Bulb B then Light Bulb A

![](_page_9_Picture_0.jpeg)

# Procedures (3 and 4 / 4)

#### Analyse

Perform your analysis by comparing your observations on the brightness of Light Bulb A, B and C

#### Conclude

Form your conclusion

# **Observations for Light Bulb C** Spin faster Spin even faster

| Light bulb | Voltage | Reading on the voltmeter |         |             |
|------------|---------|--------------------------|---------|-------------|
|            |         | 1 volt                   | 2 volts | 3 volts     |
| С          | 2.5V    | Dim                      | Bright  | Very bright |
| С          | 2.5V    | Dim                      | Bright  | Very bright |
| С          | 2.5V    | Dim                      | Bright  | Very bright |
| С          | 2.5V    | Dim                      | Bright  | Very bright |
| С          | 2.5V    | Dim                      | Bright  | Very bright |

![](_page_11_Picture_0.jpeg)

# Observations for Light Bulb B

Spin faster Spin even faster

| Light<br>bulb | Voltage | Reading on the voltmeter |         |                                          |  |
|---------------|---------|--------------------------|---------|------------------------------------------|--|
|               |         | 1 volt                   | 2 volts | 3 volts                                  |  |
| В             | 3.8V    | Very dim                 | Dim     | Bright but not as bright as Light Bulb C |  |
| В             | 3.8V    | Very dim                 | Dim     | Bright but not as bright as Light Bulb C |  |
| В             | 3.8V    | Very dim                 | Dim     | Bright but not as bright as Light Bulb C |  |
| В             | 3.8V    | Very dim                 | Dim     | Bright but not as bright as Light Bulb C |  |
| В             | 3.8V    | Very dim                 | Dim     | Bright but not as bright as Light Bulb C |  |

# Observations for Light Bulb A

۵

Spin faster Spin even faster

| Light<br>bulb | Voltage | Reading on the voltmeter  |          |         |  |
|---------------|---------|---------------------------|----------|---------|--|
|               |         | 1 volt                    | 2 volts  | 3 volts |  |
| Α             | 6.3V    | Very dim, Almost no light | Very dim | Dim     |  |
| Α             | 6.3V    | Very dim, Almost no light | Very dim | Dim     |  |
| Α             | 6.3V    | Very dim, Almost no light | Very dim | Dim     |  |
| Α             | 6.3V    | Very dim, Almost no light | Very dim | Dim     |  |
| Α             | 6.3V    | Very dim, Almost no light | Very dim | Dim     |  |

![](_page_13_Picture_0.jpeg)

# **Overall Observations**

Each light bulb gave the same results for all five attempts

![](_page_13_Figure_3.jpeg)

Spin even faster

| Light bulbs | Voltage | Reading on the voltmeter     |          |                                                |
|-------------|---------|------------------------------|----------|------------------------------------------------|
|             |         | 1 volt                       | 2 volts  | 3 volts                                        |
| С           | 2.5V    | Dim                          | Bright   | Very bright                                    |
| В           | 3.8V    | Very dim                     | Dim      | Bright but not<br>as bright as<br>Light Bulb C |
| Α           | 6.3V    | Very dim,<br>Almost no light | Very dim | Dim                                            |

# Analysis

In order to get a higher voltage, I need to spin the hand cranker faster

When I spun the hand cranker until the reading on the voltmeter said 3 volts, Light Bulb B was not as bright as Light Bulb C because Light Bulb B is with a higher voltage compared to Light Bulb C (3.8V vs 2.5V) and 3 volts is not enough for Light Bulb B to light up the brightest because it requires 3.8V for that

![](_page_14_Picture_3.jpeg)

At 3 volts, Light Bulb A was the least bright because it requires the highest voltage (6.3V vs 3.8V vs 2.5V) to light the brightest

Even if there is not enough voltage flowing, a light bulb can still light up, but it will
not be at its brightest just like Light Bulb C

### **Sources of Error**

![](_page_15_Picture_1.jpeg)

#### When the circuit is not closed. Could be because of:

![](_page_15_Picture_3.jpeg)

Wires are not connected properly

![](_page_15_Picture_5.jpeg)

Light Bulb is burned out

The motor might not be working

## Conclusion

![](_page_16_Picture_1.jpeg)

The **higher the voltage** of the bulb is, the **faster** I need to spin the hand cranker using **more energy** so that there is **enough electricity flow** to light up the light bulb the brightest.

## **Concept Application**

In a **bike spinning gym**, we can apply this concept as an **alternative source** of electricity to light the gym up by having light bulbs on the bikes. When someone **cycles on the bike** it will light the light bulb up using **kinetic energy** which will then **brighten up the gym**.

The more people cycle on a higher speed, the brighter the gym will be!

![](_page_17_Picture_3.jpeg)

- Save on electricity bills
- Cheaper membership fees
- ★ Attracts more people to the gym

## **Current Applications**

In a hydropower plant, when the moving water hits the turbine, similar to the dynamo concept, it will create electricity enough to light up a city.

![](_page_18_Picture_2.jpeg)

# **Light on a bicycle** where the light will light up as the cyclist cycles

![](_page_18_Picture_4.jpeg)

Dynamo-operated handheld flashlights

![](_page_18_Picture_6.jpeg)

## Citations

- 1. Khan Academy <a href="https://www.khanacademy.org/">https://www.khanacademy.org/</a>
- 2. Britannica Kids https://kids.britannica.com/
- 3. Twinkl https://www.twinkl.ca/
- 4. Study.com https://study.com/
- 5. BYJU'S https://byjus.com/
- 6. U.S Energy Information Administration https://www.eia.gov/
- 7. JLab https://education.jlab.org/
- 8. Quizlet https://quizlet.com/gb
- A True Book<sup>™</sup> Physical Science: Electricity and Magnetism By Cody Crane

![](_page_19_Picture_10.jpeg)

![](_page_20_Picture_0.jpeg)

## Acknowledgement

★ I thank my mom and dad for helping and supporting me through my science fair challenges

★ I would also thank Ms.Tang for giving me guidance and feedback to complete my science fair project

★ Thank you to my homeroom teacher, Mr.Chris who introduced me to electricity circuits which I then developed further by using dynamos in the circuit

![](_page_21_Picture_0.jpeg)