Title: Uncoiling E. Coli

Name: Sahiti Pathak - Grade: 9 - Renert School

DATE	ACTION	RESOURCES USED	OTHER NOTES
September 19th, 2024	Brainstorm Ideas for Project	https://www.ncbi.nlm.ni h.gov/pmc/articles/PMC8 324482 https://www.ncbi.nlm.ni h.gov/pmc/articles/PMC1 0678172/ https://my.clevelandclini c.org/health/diseases/166 38-e-coli-infection	Finding an approach to curing a disease - Malaria - Pills - Highly effective treatments but not fully - Reduces chance of sickness by 90% - Common - \$6 for rapid test diagnostics and between \$9 and \$90 for uncomplicated or severe malaria - E Coli. - No specific treatment - Calgary Case - What about children? Probably won't go away by itself for children, maybe for adults - Early detection or prevention methods - Cures <1 week (average adult time to recover) - Mean and standard deviation (SD) costs of an E. coli BSI including ED visits and

			hospitalizations for 90 days in children were \$99,214 (\$152,809) - Autism - Why it happens - Early detection - Genetics behind autism - What about in families that have no prior bictory of autism2
September 20th, 2024	Project Decided	N/A	prior history of autism? Studying a specific strain of E.Coli (potentially the one involved in Calgary daycare infections) and developing a cost-effective treatment, especially for more vulnerable groups (eg. older persons aged 65+, newborns and young children) and trying to create an early detection/prevention methods for E.Coli (eg. a device that a food inspector can use to test a specific item for the specific E.Coli strain)
September 27th, 2024	Research Started & Project Title Decided	https://www.cbc.ca/news /canada/calgary/ecoli-da ycare-meat-loaf-report-1. 7279159 https://www.cdc.gov/ecol i/about/kinds-of-ecoli.ht <u>ml</u>	Title - Uncoling E. coli: Detection and Treatment Strain Involved in Daycare Outbreak: STEC

		https://my.clevelandclini c.org/health/diseases/164 70-hemolytic-uremic-sy ndrome	STEC E. coli is Shiga toxin-producing E. coli Information: Information: Image: Destroys blood cells and reduces platelets - Largely affects Kidneys but can also affect other organs - Typical HUS affects
October 4th, 2024	Research Continued	https://ibis.utah.gov/ibis ph-view/indicator/view/ FooPoiEcoli.Year.html https://www.mayoclinic. org/diseases-conditions/ e-coli/symptoms-causes/ syc-20372058 https://www.health.ny.go v/diseases/communicabl e/e coli/stec.htm https://www.mayoclinic. org/diseases-conditions/ e-coli/diagnosis-treatme nt/drc-20372064	E. coli diarrhea In the United States, there are around 100000 infections, 3000 hospitalizations and 90 deaths per year "Effective prevention is the best treatment for STEC" E. coli is commonly transmitted through contact with

	contaminated food such
	as:
	- Ground Beef
	- After cattle are
	slaughtered and
	processed, the E. coli
	present in their
	intestines can get on the
	meat. Ground beef also
	combines different types
	of animals, increasing
	risk of contamination
	- Unpasteurized Milk
	- Fresh Produce
	Healthy adults normally
	recover in a week,
	however for vulnerable
	groups, especially
	children under 5, can
	develop a form of kidney
	failure called hemolytic
	uremic syndrome (HUS).
	Symptoms of STEC E.
	coli typically appear 3-4
	days after contact with
	the contaminated
	product but can appear
	anywhere between 1-10
	days after contact. There
	is no specific treatment
	for STEC infections.
	Antibiotics aren't
	typically used for
	treatment as they aren't

			proven to be effective against STEC infections and can in some cases, increase the risk of HUS.
October 9th, 2024	Renert School Proposal Started	N/A	Information Required: • Title • Background on topic • Why is it important and outstanding? • What issue/concern is it going to solve? • How are you going to find answers (steps)?
October 13th, 2024	Research Continued	https://www.ncbi.nlm.ni h.gov/pmc/articles/PMC4 607253/ https://pubmed.ncbi.nlm .nih.gov/19827953/ https://www.mayoclinic. org/diseases-conditions/ e-coli/symptoms-causes/ syc-20372058	2,801,000 acute illnesses (illnesses that are usually sudden and severe) annually, leads to 3890 cases of HUS and 230 deaths. These estimates are likely conservative (low) Link 1 Of 3464 cases of STEC, 218 (6.3%) developed HUS. Highest amount of HUS cases was in children <5 (15.3%). Death occurred in 0.6% in those without HUS 4.6% in those with HUS - Unpasteurized Milk - E. coli on a cow's udder or on milking

			equipment can get into raw milk that is not further pasteurized - Fresh Produce - Runoff from cattle farms can contaminate fields with fresh produce. Specific vegetables are susceptible to this type of contamination (eg. lettuce or spinach)
October 16th, 2024	Renert School Proposal Slideshow Started	Canva	Background - E. coli is a bacteria that is commonly spread through contaminated food - Ground Beef - Unpasteurized Milk - Fresh Produce - Shiga Toxin-Producing E. coli (STEC) is a strain of E. coli that releases a toxin which damages toxin which damages the body's cells - Typically associated with more severe symptoms - Vulnerable groups: people <5 and >65 - Estimated >265,000 cases of just STEC E.coli infections per year in the United States (2018) - Mild to severe symptoms

	1
	- Many cases are not
	reported as individuals
	do not seek treatment or
	receive testing for
	infection
	- Estimated 3-5%
	case-fatality rate (WHO)
	- No specific treatment
	for STEC E. coli
	infections
	- Antibiotics are not
	used
	- Not effective
	- Can worsen
	symptoms/increase the
	risk of HUS
	- "Effective prevention is
	the best treatment"
	Importance
	- Although STEC E. coli
	may not cause an
	extremely large amount
	of deaths, many people
	are still infected and
	affected by the severe
	symptoms
	- STEC E. coli infections
	can be fatal, not only
	affecting infected
	individuals, but their
	families as well. Take the
	Calgary daycare case, for
	example

	- The lack of treatment
	is a concern. For E. coli
	related infections, there
	is no treatment either
	for curing the infection,
	relieving symptoms or
	preventing
	complications
	- Early detection of E.
	coli on foods that is
	potentially going to be
	distributed can
	reduce the risk of
	widespread
	contamination and
	prevent the spread of
	this infection
	- Early detection can also
	help minimize
	damage and reduce the
	risk of other
	symptoms or conditions
	(eg. preventing
	the use of antibiotics,
	which can lead to
	HUS in some cases)
	- Early detection can also
	provide doctors
	or nurses with more
	time to understand
	the severity of
	symptoms, risk of
	developing HUS or
	investigating into the
	2 2

	source of the infection
	Objectives
	- My first objective is to
	conduct research on
	the topic of STEC E. coli,
	including symptoms,
	related bacteria, the
	composition of the
	bacteria, HUS, etc.
	- Study similar bacteria
	to STEC E. Coli, research
	on treatments for the
	bacteria and see if the
	treatment could
	potentially be used for
	STEC E. coli
	- Finally, my last
	objective is to use all
	of the previously used
	research to create an
	early detection or
	prevention method to
	test for STEC E. coli
	Approach
	- Research into various
	components of STEC E.
	coli including shiga
	toxin, chemical
	composition,
	interactions with body
	cells, strains of E. coli in
	different environments,

			etc. - Studying similar types of bacteria, treatments that have been proven effective and identifying if said treatments can be used for treating STEC E. coli - Use all of previously researched information to aim to create a easy-to-use device that can detect E. coli in samples of food and provide quick results and compare with previous experiments regarding this
October 20th, 2024	Graph Added to Proposal Presentation Slideshow Edited for Less On-Screen Text and Larger Font Size	https://www.gov.uk/gove rnment/publications/esc herichia-coli-e-coli-o157- annual-totals/shiga-toxi n-producing-escherichia -coli-stec-data-2021	7 6 7 7 7 7 7 7 7 7 7 7 7 7 7
October 22nd, 2024	Slide Added	https://en.ssi.dk/surveilla nce-and-preparedness/s urveillance-in-denmark/ annual-reports-on-disea se-incidence/annual-rep ort-on-stec-and-haemol ytic-uraemic-syndrome	<figure><figure><figure></figure></figure></figure>

		https://www.ecdc.europa. eu/sites/default/files/doc uments/STEC_AER_2022 Report.pdf	Relevance - The number of STEC E. coli cases have been increasing every year - A decline was observed in 2020 - Due to Covid-19 pandemic - No countries in the European Union have reported a decrease in the number of cases from 2018-2022 - Four countries (Australia, France, Malta and Spain) reported a significant
			increase in the same time period
October 25th, 2024	Slideshow Presented for Renert School Judges	N/A	CYSF Candidates Announced October 30th - This Project was Selected
November 12th, 2024	Research on STEC and Shiga Toxin Specifically Started	N/A	Lives in the stomach of healthy cattle
November 14th, 2024	Research into Shiga Toxin *Note - For the sections labelled "copied", I have looked into and specifically aimed to	https://www.sciencedirec t.com/science/article/abs /pii/S0041010109005522 https://www.sciencedirec t.com/topics/medicine-a nd-dentistry/shiga-toxin	- "Shiga toxin belongs to the group of bacterial and plant toxins that act on cells by binding to cell surface receptors via a binding-moiety, then

]
	erstand at the very	the toxins are
	t, the base concepts	endocytosed and
fron	n the notes	transported retrogradely
		to the Golgi apparatus
		and the endoplasmic
		reticulum (ER) before an
		enzymatically active
		moiety enters the cytosol
		and exerts the toxic
		effect."
		- Moiety: any part of a
		molecule (does not have
		to be the full molecule)
		- Endocytosis: a
		fundamental cellular
		process where nutrient
		uptake, receptor
		internalization and
		regulation of cell
		signaling are moderated
		- Microorganisms,
		such as bacteria or
		viruses, and toxins
		(including Shiga toxin)
		use this process in order
		to enter cells
		- Golgi apparatus: a cell
		organelle that processes
		and packages proteins
		and lipids for transport
		outside the cell
		- Endoplasmic
		Reticulum: produce
		proteins required by the

Γ	1	
		cell to function (rough
		ER contains ribosomes
		which produce these
		proteins)
		"The family of Shiga
		toxins consists of several
		structurally and
		functionally similar
		protein toxins. The
		prototype of the family
		is the Shiga toxin (Stx)
		elaborated by S.
		dysenteriae type 1; the
		Shiga toxins expressed by
		E. coli have a numerical
		designation following the
		name of Shiga toxin, e.g.,
		Shiga toxin 1. Shiga toxin
		1 (Stx1) differs from Shiga
		toxin from S. dysenteriae
		by a single amino acid.
		Shiga toxin 2 (Stx2) is
		approximately 50%
		homologous with Stx1 at
		the protein level and is
		immunologically
		distinct. Other forms of
		Shiga toxins are listed in
		Table II. Shiga toxin
		family proteins inhibit
		protein synthesis by
		blocking the elongation
		factor 1-dependent

	binding of
	aminoacyl-tRNA to
	ribosomes. All Shiga
	toxins known to date are
	composed of an
	enzymatically active A
	subunit and a pentamer
	of identical B subunits
	that mediates specific
	binding activity. The A
	subunit functions as a
	glycohydrolase, cleaving
	a specific adenine from
	the 28S rRNA and
	irreversibly inhibiting
	ribosomal function. This
	activity is identical to
	the enzymatic activity
	observed for the plant
	toxin ricin [89]. X-ray
	crystallographic analyses
	of Shiga toxin and Stx1 B
	subunits have confirmed
	the AB5 structure,
	revealing a pentameric B
	subunit ring
	surrounding a
	C-terminal α -helix of the
	A subunit [90,91], which is
	similar to the AB5
	structure of cholera
	toxin and E. coli
	heat-labile toxin. When
	the A subunit is nicked

	with trypsin and
	reduced, an A1 portion of
	approximately 28 kDa
	and an A2 peptide of
	approximately 4 kDa are
	separated. The A1
	fragment contains the
	enzymatically active
	portion of the toxin
	molecule, and the A2
	component is required to
	noncovalently bind the
	whole A subunit to the B
	pentamer [92]. The A1
	and A2 fragments are
	linked by a disulfide
	bond. The A2 fragment
	may be important in
	holotoxin assembly [92],
	and the disulfide bridge
	between A1 and A2
	appears necessary for
	pentamer formation [93].
	The disulfide loop
	contains the sequence
	Arg-X-X-Arg, a consensus
	motif for cleavage by the
	membrane-anchored
	protease furin. Cleavage
	of Shiga toxin at this
	site, resulting in the
	formation of A1 and A2
	fragments, appears to be
	important for cellular

	intoxication [94].
	Interestingly, Stx2d is
	activated by intestinal
	mucus; this
	characteristic
	distinguishes Stx2d from
	other Stx2 family
	members. The substance
	from mucus that
	activates Stx2d has been
	identified as an elastase
	that cleaves the
	C-terminal two amino
	acids of the A2 subunit
	[95], but elegant studies
	with hybrid Shiga toxins
	have demonstrated that
	this activation also
	depends on the structure
	of the B pentamer [96].
	Structural features
	important to the
	enzymatic activity of
	Shiga toxins have been
	defined. Stx1, Stx2, and
	Stx2e and the plant toxin
	ricin, all of which inhibit
	protein synthesis by the
	same mechanism of
	action, share two areas
	of homology in their A
	subunits [97]. In area 1,
	glutamic acid 167 is
	critical for biologic

			activity of Stx1 [98]. Similar experiments in Stx2 have shown similar results, affirming the importance of this glutamic acid residue in the active site [97]. In area 2, deletion of amino acids 202 through 213 of the Stx2 A subunit still allows holotoxin assembly but not cytotoxicity [97]." - Copied from https://www.sciencedirec t.com/topics/medicine-a nd-dentistry/shiga-toxin
November 25th, 2024	Research into Shiga Toxin *Note - For the sections labelled "copied", I have looked into and specifically aimed to understand at the very least, the base concepts from the notes	https://www.sciencedirec t.com/topics/medicine-a nd-dentistry/shiga-toxin https://pmc.ncbi.nlm.ni h.gov/articles/PMC640250 6/	Interactions with body cells - Shiga toxin, similarly to ricin and viscumin (plant toxins) removes an adenine from the 28S RNA of the 60S subunit of the ribosome -> inhibits protein synthesis - Adenine: one of the four nucleotide bases and one of the two purine bases, the other being guanine. Adenine and thymine are paired

	together in
	double-stranded DNA
	- 28S RNA: a structural
	ribosomal RNA for the
	subunit of eukaryotic
	cytoplasmic ribosomes,
	making it one of the
	most basic components
	of eukaryotic cells. 28S
	RNA acts as a ribosome
	and catalyzes the peptide
	bond formation, when
	two amino acids join
	together to form a
	protein
	- 60S: a subunit in
	eukaryotic cells that
	catalyzes peptide bond
	formation.
	- "Ribosomes contain
	two different subunits,
	both of which are
	required for translation.
	The small subunit ("40S"
	in eukaryotes) decodes
	the genetic message and
	the large subunit ("60S"
	in eukaryotes) catalyzes
	peptide bond formation"
	- Protein synthesis: a
	biological process in
	which cells make
	proteins

	- This ribotoxic effect is
	followed by apoptosis
	- Apoptosis: a
	programmed, type of cell
	death where a series of
	molecular steps in a cell
	lead to the death of the
	cell. Often used by the
	body in order to remove
	abnormal or
	unnecessary cells, which
	is why apoptosis is
	common in early stages
	of development
	"Shiga toxins are either
	phage-encoded (Stx1 and
	Stx2) or chromosomally
	encoded (Stx and Stx2e)
	[99–101]. In the early 1970s
	it was first reported that
	lysates of an E. coli
	O26:H11 strain isolated
	from an outbreak of
	infantile diarrhea could
	transfer
	enterotoxigenicity to a
	nonpathogenic E. coli in
	vitro [102]. This was the
	first indication that in
	STEC, Shiga toxins were
	encoded by
	bacteriophages. From
	lysates of this strain, the

[
	phage known as H-19B
	subsequently was
	isolated. This phage was
	shown to encode Stx1
	and to have DNA
	sequence homology with
	the phage lambda (?)
	[103,104]. A second
	lambdoid phage
	encoding Stx2,
	designated 933W, was
	isolated from a clinical
	O157:H7 isolate
	responsible for an
	outbreak of hemorrhagic
	colitis in 1982 [10,99,105].
	Since these initial
	observations, it is now
	appreciated that
	Stx-encoding phages are
	lambda-like and that
	the regulatory
	components relating to
	induction and phage
	gene control appear to
	be similar to those in
	lambda. Clinical STEC
	isolates may contain a
	single phage or multiple
	phages. Many clinical
	O157:H7 isolates harbor
	distinct Stx1 and Stx2
	bacteriophages. Various
	groups have published

	the nucleotide sequences
	of the stx genes [106–111].
	The different stx operons
	have a similar structure
	and are composed of a
	single transcriptional
	unit consisting of one
	copy of the A subunit
	gene followed by the B
	subunit gene. It was
	believed initially that
	the B subunit had its
	own promoter [112]; later
	it was appreciated that a
	single promoter
	transcribes A and B
	subunits; B subunit
	translation is augmented
	due to a stronger
	ribosomal binding site
	compared with A
	subunit translation. This
	results in more B
	subunit translation,
	providing more B
	subunits for the A1:B5
	structure of the Shiga
	toxin holotoxin [113].
	Comparison of the
	nucleotide sequence of
	the A and B subunits of
	Stx1 and Stx2 reveals 57%
	and 60% homology,
	respectively, with 55%

	and 57% amino acid
	homology [109]. Despite
	this degree of homology,
	Stx1 and Stx2 are
	immunologically
	distinct, and neither is
	cross-neutralized by
	polyclonal antibody
	raised to the other toxin.
	Stx2c is very similar to
	Stx2; the A subunits are
	identical, and the B
	subunits share 97%
	amino acid homology.
	Stx2c and Stx2d have
	identical B subunits; the
	A subunits share 99%
	homology [114]. Stx2e has
	the least similarity to
	other Stx2 family
	members. Although the
	Stx2 and Stx2e A
	subunits have 93%
	deduced amino acid
	homology, the B
	subunits have only 84%
	deduced amino acid
	sequence homology [115].
	It is not surprising
	therefore that the
	receptor binding
	specificity of Stx2e is
	different from that of
	other Stx2 family
	-

[1	
		members. A fifth family
		member, Stx2f, has been
		described recently in
		STEC isolated from
		populations of feral
		pigeons, although little is
		known about this
		variant [116].
		The search for Shiga
		toxin receptors on
		mammalian cells began
		in 1977, when Keusch and
		Jacewicz reported that
		toxin-sensitive cells in
		tissue culture removed
		toxin bioactivity from
		the medium, whereas
		toxin-resistant cells did
		not [117]. Furthermore,
		these studies suggested
		that the receptor was
		carbohydrate in nature
		and that the toxin was a
		sugar-binding protein or
		lectin. Later, a
		toxin-binding
		membrane component
		was extracted from
		toxin-sensitive HeLa cells
		and from rabbit jejunal
		microvillus membranes
		(MVMs) [118]. The MVM
		binding site was shown

1	
	to be
	globotriaosylceramide
	(Gb3) [118,119]. Lindberg
	and colleagues reported
	that Stx1 bound to the P
	blood group active
	glycolipid Gb3, which
	consists of a
	trisaccharide of galactose
	α 1-4-galactose- β -1-4-gluc
	ose linked to ceramide,
	and that Gb3 could
	inhibit biologic activity
	of Stx1 in cell culture
	systems [120]. Most Stx2
	family members share a
	preference for Gb3
	binding, except for Stx2e,
	which binds
	preferentially to
	globotetrosylceramide
	(Gb4), another neutral
	glycolipid, which has a
	subterminal Gal-α1-4-Gal
	disaccharide [121–123]. In
	many cases, the
	sensitivity of cells to
	Shiga toxins appears to
	be related to the number
	of toxin receptors
	present on the cell
	surface. Measures that
	increase or decrease
	toxin receptor expression
	_

1	
	directly alter responses
	to these potent toxins
	[124]. In addition, toxin
	activity can be
	modulated by the fatty
	acid composition of the
	lipid ceramide moiety
	[125], in particular fatty
	acid carbon chain
	length, which alters the
	intracellular uptake
	pathway of toxin and its
	biologic activity. This
	may explain why some
	cells can express Gb3 but
	fail to respond to toxin
	[126]. Arab and Lingwood
	[127] demonstrated the
	importance of the
	surrounding lipid
	environment on the
	availability of glycolipid
	carbohydrate for Shiga
	toxin binding. The lipid
	heterogeneity of Gb3
	appears to be important
	in Shiga toxin binding
	and may define a
	growth-related
	signal-transduction
	pathway used by Shiga
	toxin [128]. Sensitivity of
	cells to Shiga toxin also
	can be affected by
	5

	regulation of receptor
	expression. For example,
	rabbit intestinal
	brush-border membrane
	Gb3 is both
	developmentally and
	maturationally regulated
	via the biosynthetic
	Gb3-galactosyltransferas
	e and degradative
	α -galactosidase enzymes
	[129]. Gb3 is also
	maturationally regulated
	in cultured human
	intestinal epithelial cells.
	Gb3 is induced by
	exposure of villus-like
	Caco2A cells, but not
	crypt-like T84 cells, to
	known regulators of gene
	transcription, e.g.,
	sodium butyrate [130]. In
	Caco2A cells,
	butyrate-induced Gb3
	expression coincides
	with expression of villus
	cell differentiation
	markers such as alkaline
	phosphatase, lactase, and
	sucrase. Produced by
	normal resident enteric
	flora in high
	concentration, butyrate
	effects on intestinal

			epithelium may be pertinent in the human colon, the site of STEC infection." - Copied from <u>https://www.sciencedirec</u> <u>t.com/topics/medicine-a</u> <u>nd-dentistry/shiga-toxin</u>
November 27th, 2024	Mentor Meeting	N/A	Mentor Name: Ms. Maja Omerovic Discussion Regarding - Project Overall - Potential Detection or Testing Method - Paper https://www.sciencedirec t.com/topics/medicine-a nd-dentistry/shiga-toxin
December 2nd, 2024	Research into Shiga Toxin	https://link.springer.com /article/10.1007/s00253-01 5-7236-3	"Shiga toxins are a group of type 2 ribosome-inactivating proteins (RIPs) produced in several types of bacteria. The toxins possess an AB5 structure, which comprises a catalytic A chain with N-glycosidase activity, and five identical B chains and recognize and bind to the target cells with specific

	carbohydrate moieties.
	In humans, the major
	molecular target which
	recognizes the Shiga
	toxins is the Gb3
	receptor, which is
	mainly expressed on the
	cell surface of
	endothelial cells of the
	intestine, kidney, and
	the brain. This causes
	these organs to be
	susceptible to the
	toxicity of Shiga toxins.
	When a person is
	infected by Shiga
	toxin-producing
	bacteria, the toxin is
	produced in the gut,
	translocated to the
	circulatory system, and
	carried to the target
	cells. Toxicity of the
	toxin causes
	inflammatory responses
	and severe cell damages
	in the intestine, kidneys,
	and brain, bringing
	about the hemolytic
	uremic syndrome (HUS),
	which can be fatal. The
	Shiga toxin requires a
	couple of steps to exert
	its toxicity to the target

	1		1
			cells. After binding with
			the target cell surface
			receptor, the toxin
			requires a complicated
			process to be transported
			into the cytosol of the
			cell before it can
			approach the ribosomes.
			The mechanisms for the
			interactions of the toxin
			with the cells are
			described in this review.
			The consequences of the
			toxin on the cells are
			also discussed. It gives an
			overview of the steps for
			the toxin to be produced
			and transported,
			expression of catalytic
			activity, and the effects
			of the toxin on the target
			cells, as well as effects on
			the human body." -
			copied from
			https://link.springer.com
			<u>/article/10.1007/s00253-01</u>
			<u>5-7236-3</u>
December 6th, 2024	Research into Similar	https://www.mayoclinic.	Salmonella
	Bacteria Started	org/diseases-conditions/s	- Common bacterial
		almonella/symptoms-ca	disease affecting the
		uses/syc-20355329	intestinal tract
		https://penntoday.upenn	- Typically live in animal
		.edu/news/how-avoid-foo	and human intestines
		<u></u>	and numun intestines

[[
	<u>d-poisoning-e-coli-and-s</u>	and are shed through
	<u>almonella</u>	stool (feces)
		- Most likely sources of
		information are
		contaminated water or
		food
		- Higher risk in
		countries without clean
		drinking water and/or
		proper sewage disposal
		- Causes include: raw
		meat, poultry, seafood,
		raw/undercooked eggs,
		unpasteurized dairy
		products, fruits,
		vegetables, improperly
		handled food, infected
		surfaces and infected
		pets/animals
		- Some people with
		salmonella infection
		have no symptoms (can
		be asymptomatic)
		- Symptoms include:
		diarrhea, fever, nausea,
		vomiting, chills,
		headache, blood in stool
		and stomach cramps
		within 8 to 72 hours after
		exposure (¼ - 3 days)
		- Diarrhea can cause
		severe dehydration -
		should receive

	1		<u>_</u>
			immediate medical
			attention
			- Occasionally,
			individuals can develop
			typhoid fever, a deadly
			disease, particularly in
			developing countries
			- Healthy people
			normally recover within
			a few days to a week
			without specific
			treatment
			- Life-threatening
			complications can
			develop if infection
			spreads beyond the
			intestines
			- Connections to E. coli
			- Both bacteria and
			fundamentally similar
			- Salmonella evolved
			from E. coli 100 million
			years ago
			- E. coli is more
			heterogeneous and lives
			in the gut of organisms
			like cows
December 26th, 2024	Research on Shiga Toxin	https://pmc.ncbi.nlm.ni	Essentially, STEC releases
	Added	h.gov/articles/PMC7126671	Shiga toxin which in
			turn, damages the
			intestines, making it
			harmful to the body
			· · <i>y</i>

			The STEC secrete Shiga
			toxins Stx 1 and Stx2,
			which bind to the
			enterocytes, the
			absorptive epithelial cells
			present on the luminal
			surface of the small and
			large intestines
			- Note: Although we have
			E. coli in our guts, it is
			typically a harmless
			strain that does not
			affect humans like STEC
			does. In fact, most
			strains of E. coli are
			harmless.
December 30th, 2024	Image Added	https://pmc.ncbi.nlm.ni	Methode (1)
	Research on Similar	h.gov/articles/PMC357360	Heric Hi HO N N H </td
	Bacteria	<u>7/</u>	Mice Mice <th< td=""></th<>
		https://emedicine.medsc	week Star Star <th< td=""></th<>
	Information about	ape.com/article/785774-m	predence) Standard 6 3 3 8 8 6 9 6 3 8 3 8 3 6 9 6 3 8 9 7 6 8 6 8 Standard 6 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	Prevention Added	edication?form=fpf	Treatment - Antibiotics
		https://pmc.ncbi.nlm.ni	- Can't be used for STEC
		h.gov/articles/PMC357360	as in most cases,
		<u>7/</u>	antibiotics either
		https://www.frontiersin.o	increase the risk of an
		rg/journals/cellular-and-	individual getting HUS
		infection-microbiology/a	(as it can increase the
		rticles/10.3389/fcimb.2020	production of shiga
		<u>.00169/full</u>	toxin) or have not been
	1		chown to have any offect
			shown to have any effect

	- An example of an
	antibiotic for salmonella
	is ciprofloxacin
	- However, in general,
	around 73% of all E. coli
	isolates, a culture of
	microorganisms for
	study, were found to be
	resistant to
	ciprofloxacin.
	- Not only is it that
	antibiotics cannot be
	used for STEC, a major
	portion of other strains
	are resistant to various
	antibiotics.
	Toxin-Based Vaccines
	Stx is the main virulence
	factor associated with
	the potency of
	STEC-mediated disease
	pathology. It is released
	from the bacterial cell
	and exposed to the host
	immune system and has,
	therefore, long been
	considered one of the
	most prudent targets for
	vaccine strategy. Once
	released from the
	bacterial cell, Stx can be
	detected in the intestinal
	detected in the intestinal lumen and its target

	cells in the kidney and
	brain (Clements et al.,
	2012). Hence, immune
	cells primed to recognize
	Stx by prior vaccination
	can interfere and
	respond to the toxin as it
	travels from the site of
	release to the distal
	organs and eliminate it
	before it reaches its
	targets (Figure 2A). Of
	Stx1, Stx2, and the
	different varieties of
	each of these subtypes,
	Stx2 has been at the
	center of a greater
	number of vaccination
	approaches as it is
	commonly associated
	with more severe disease
	outcomes in humans,
	such as the development
	of HUS. Several
	vaccination strategies
	have been developed and
	tested that are solely
	toxin-based. With the
	active site of Stx known,
	inactive derivatives of
	the toxin are easy to
	make, and present safe
	alternatives for
	application. Several

1	
	different studies showed
	that vaccination of
	animals with purified
	inactive Stx derivatives
	induced the production
	of neutralizing
	antibodies against the
	respective toxin and
	protected the animals
	from toxemia or limited
	shedding or disease after
	challenge (Gordon et al.,
	1992; Acheson et al., 1996;
	Konadu et al., 1999;
	Marcato et al., 2001, 2005;
	Ishikawa et al., 2003;
	Kerner et al., 2015;
	Schmidt et al., 2018). In
	addition to vaccines
	based on the inactive
	toxin, hybrid subunit
	vaccine approaches have
	been tested as the
	development of a
	vaccine, which may
	induce neutralizing
	antibodies against not
	only one but both types
	of Stx, would be ideal.

l	1	
		Vaccination with a
		hybrid toxin consisting
		of an inactive Stx2
		A-subunit fused to the
		native Stx1 B-subunit
		was able to produce
		neutralizing antibodies
		against both Stx1 and
		Stx2. Mice immunized
		with this toxin were
		protected from
		subsequent lethal
		challenge with either
		Stx1 or Stx2, or both
		toxins (Smith et al.,
		2006).
		Injection with a purified
		fusion protein consisting
		of the B-subunits of Stx
		subtypes 1 and 2
		(Stx2B-Stx1B; short 2S)
		generated neutralizing
		antibodies against both
		Stxs and increased
		survival of mice after a
		challenge with E. coli
		O157:H7 lysates (Gao et al.,
		2009). Interestingly, the
		protective effects of the
		vaccine were stronger
		with the
		Stx2B-Stx1B-subunit
		fusion than when

1	1	
		separate B-subunits were
		used for immunization
		(Gao et al., 2009).
		Moreover, a fusion
		protein comprising the
		B-subunit of Stx1 and the
		inactive A-subunit of
		Stx2 (Stx2Am-Stx1) was
		constructed.
		Immunization with this
		protein resulted in a
		strong induction of
		neutralizing antibodies
		against both types of
		Shiga toxin and
		increased the survival
		rate of mice after
		challenge with E. coli
		O157:H7 lysates (Cai et al.,
		2011). A vector-based DNA
		vaccine encoding the
		C-terminal 32 amino
		acids of the Stx2
		A-subunit and the
		complete B subunit
		(pStx2 Δ AB) also produced
		neutralizing antibodies
		against both Stx2
		subunits. It further
		decreased the mortality
		of mice after lethal
		challenge with Stx2
		(Bentancor et al., 2009).

[[]
	Intranasal
	immunization with the
	Stx2 B-subunit in
	combination with a
	mutant of heat-labile
	toxin induced
	neutralizing antibodies
	against both Stx1 and
	Stx2 in vivo and
	protected mice against
	fatal disease.
	Interestingly,
	immunization of mice
	with the B-subunit of
	Stx1 only protected
	against subsequent
	challenge with Stx1 (Tsuji
	et al., 2008). A fusion of
	the Stx B-subunit to the
	B-subunit of heat-labile
	toxin has also been
	assessed for toxin
	subtype 2e. Here, the
	ability of the fusion
	protein to induce
	neutralizing antibody
	production was much
	higher than for the Stx2
	B-subunit alone.
	Furthermore, mice that
	had been immunized
	with the Stx2eB-LTB
	fusion protein were

1	l .	
		protected against
		challenge with a lethal
		dose of toxin (Ran et al.,
		2008).
		In another study, the B
		subunit of Stx2 was fused
		with Brucella lumazine
		synthase, a protein that
		forms a dimer of
		pentamers thereby
		creating a scaffold for
		the presentation of the
		Stx. The resulting fusion
		protein induced a lasting
		immune response in
		mice after three
		vaccinations and
		vaccinated mice were
		protected from
		intravenous challenge
		with Stx2. Furthermore,
		antibodies isolated from
		vaccinated mice
		neutralized Stx2 as well
		as its variants. In
		addition, weaned mice
		inoculated with the
		immune sera were
		protected against oral
		infection with EHEC
		(Mejias et al., 2013).
1		

	Vaccine Approaches
	Based on LEE-Encoded
	Proteins
	While Stx is produced by
	all strains that are
	classed as STEC, only
	some STEC strains
	encode the locus of
	enterocyte effacement
	pathogenicity island
	(LEE), which encodes for
	the T3SS. Therefore, the
	use of T3-secreted
	proteins in vaccine
	approaches is valid but
	limits the specificity of
	the vaccines to
	LEE-positive STEC
	strains. As the most
	common EHEC strains
	including those of the
	O157:H7 serotype are
	LEE-positive, the T3-S
	protein-based
	approaches will target
	many of the most
	common serotypes.
	However, they do not
	affect other pathotypes
	such as the O104:H4
	strain, which caused the
	outbreak in Germany in
	2011.

	Only a few of the
	T3-secreted proteins can
	be used as targets for
	vaccination strategies,
	however, as most are
	translocated from the
	bacterial cell directly
	into the host cell
	cytoplasm and are never
	exposed to the
	surrounding
	environment. A few
	proteins including EspA,
	EspB (Figure 2A), Tir, and
	intimin (Figure 2B) are
	exposed on the outside of
	the cell at times as
	antibodies to these
	proteins are detectable
	in humans after an
	EHEC infection (Li et al.,
	2000; Asper et al., 2011).
	These proteins have
	been assessed as targets
	for vaccination
	strategies. The
	translocated intimin
	receptor (Tir) inserts into
	the host cell membrane
	upon translocation. Its
	surface-exposed receptor
	domain then interacts
	with the bacterial outer
	membrane protein

1	
	intimin to induce
	intimate attachment of
	the bacteria to the host
	cell surface.
	Furthermore, protein
	components of the T3
	secretion system such as
	the sheath protein EspA,
	as well as EspB and EspD,
	the proteins required for
	forming a pore in the
	host cell membrane,
	have also been assessed
	for their
	immunogenicity
	(Loureiro et al., 1998;
	Martinez et al., 1999;
	Asper et al., 2011; Guirro
	et al., 2013). Most
	T3-secreted
	protein-based vaccines
	have been assessed using
	the intranasal
	immunization route.
	This vaccination
	approach promises a
	needle-free application
	and has, so far, yielded
	promising results.
	- Ŭ
	Subcutaneous and
	intranasal
	immunization of mice

	with T3-secreted
	proteins showed that
	while subcutaneous
	injection was unable to
	raise an immune
	response, intranasal
	vaccination induced the
	production of anti-Tir
	and EspA antibodies.
	This reduced E. coli
	O157:H7 shedding after
	infection (Babiuk et al.,
	2008). Subcutaneous and
	intranasal
	immunization with
	purified Tir showed
	similar results. Mice
	immunized intranasally
	produced neutralizing
	antibodies, which
	resulted in reduced fecal
	shedding of E. coli
	O157:H7 after infection
	and increased animal
	survival (Fan et al., 2012).
	Intranasal
	immunization of mice
	with a purified fusion
	protein consisting of
	EspB and the C-terminus
	of intimin induced
	neutralizing antibodies
	against both EspB and
	intimin and antisera of

1	
	immunized mice had
	promising
	anti-hemolytic effects in
	vitro (Cataldi et al., 2008).
	A recombinant fusion
	protein of EspA, intimin,
	and Tir (EIT) was created
	and used for
	immunization of mice.
	Subcutaneous or oral
	immunization of mice
	with the EIT protein
	resulted in a significant
	decrease of bacterial
	colonization and
	shedding after challenge
	with EHEC O157:H7 and
	an increase in anti-EIT
	IgG and IgA (Amani et al.,
	2010). In a follow-up
	study, rEIT was linked to
	chitosan and used for
	either intranasal
	electrospray (Doavi et al.,
	2016) or oral (Khanifar et
	al., 2019a) immunization
	of mice. Intranasal and
	oral administration both
	induced specific immune
	responses and reduced
	bacterial shedding after
	challenge with E. coli
	0157:H7 (Doavi et al.,

	2016). Oral
	administration
	additionally helped
	protect mice against E.
	coli O157 challenge and
	reduced damage
	(Khanifar et al., 2019a).
	An additional approach
	was made by
	encapsulating EIT
	together with the
	B-subunit of Stx2
	(Khanifar et al., 2019b).
	Mice were
	subcutaneously or orally
	immunized and either
	infected with E. coli
	O157:H7 or challenged
	with a fatal dose of Stx2.
	While the former mice
	showed reduced
	colonization and
	bacterial shedding, the
	latter showed increased
	survival (Khanifar et al.,
	2019b). A shortened
	variant of the EIT fusion
	protein consisting of
	only EspA and intimin
	(EI) was recombinantly
	expressed and its
	immunogenicity was
	assessed after
	subcutaneous injection

	with two subcutaneous
	boosters and a third
	booster that was
	administered i.p. (Rad et
	al., 2013). This fusion
	protein, too, induced an
	immune response and
	decreased bacterial
	shedding and
	histopathological
	changes in the intestine
	after challenge (Rad et
	al., 2013).
	In addition, the
	immunogenicity and
	protective efficacy of a
	DNA vaccine against a
	truncated version of the
	EHEC factor for
	adherence-1 (Efa-1'; the
	homolog of LifA in EPEC
	and C. rodentium) was
	evaluated in mice.
	Intranasal
	immunization with
	plasmid DNA induced
	efa-1-specific immune
	responses and protected
	mice from subsequent
	challenge with E. coli
	O157:H7 (Riquelme-Neira
	et al., 2015).

	Peptide-based
	approaches to
	vaccination include the
	KT-12 peptide, which is
	based on a predicted
	B-cell epitope of intimin
	conjugated to adjuvant
	(Wan et al., 2011) and the
	synthetic peptides CoilA
	and CoilB, which interact
	with EspA (Larzabal et
	al., 2013). KT-12, when
	used for intranasal
	immunization, induced
	the production of
	neutralizing antibodies
	and protected mice from
	challenge with E. coli
	O157:H7 (Wan et al., 2011).
	Immunization of mice
	with CoilA and CoilB was
	shown to block
	intestinal damage in
	mice infected with C.
	rodentium (Larzabal et
	al., 2013).
	A fusion of EspA, the
	C-terminus of intimin
	and the B-subunit of
	Stx2 (EIS), was
	constructed and assessed
	for its ability to induce
	the production of

1	
	neutralizing antibodies.
	Indeed, antibodies
	against all three
	components of the
	fusion protein were
	detected, and
	immunized mice were
	protected from challenge
	with E. coli O157:H7 or
	lysates thereof (Gu et al.,
	2009). Fusion of the
	processed, active form of
	the Stx2A-subunit
	(Stx2A1) to the
	N-terminus of EspA
	induced the production
	of neutralizing
	antibodies in immunized
	mice (Cheng et al., 2009)
	and a fusion of the
	B-subunits of Stx1, Stx2,
	to a truncated version of
	intimin resulted in
	increased immune
	responses and protection
	of mice after a fatal
	challenge with E. coli
	0157:H7 (Gao et al., 2011).
	Intranasal
	immunization with a
	novel EspA-Tir fusion
	protein (EspA-Tir-M;
	designating that the
	5 5

1	
	middle domain of Tir
	was used) showed high
	levels of neutralizing
	antibodies while
	subcutaneous
	vaccination had little
	effect. Additionally,
	intranasal
	immunization increased
	the survival of mice
	from subsequent
	challenge with E. coli
	O157:H7 and reduced
	organ damage (Lin et al.,
	2017b).
	Bacteria-Based Vaccines
	Attenuated or Vaccine
	Strains
	Several vaccination
	approaches use
	non-pathogenic bacteria
	or bacterial vaccine
	strains as delivery
	vehicles and to increase
	immunogenicity. These
	approaches include
	genetically modified
	EHEC, EPEC, and
	Salmonella strains as
	well as probiotic strains
	such as Lactococcus
	lactis and Lactobacillus
	acidophilus.

	A non-pathogenic
	variant of the EHEC
	O157:H7 86-24 strain was
	created by deletion of
	both the gene encoding
	the transcriptional
	regulator of the LEE (ler)
	and the stx gene. These
	deletions completely
	abolished cytotoxicity in
	vitro when compared to
	EHEC EDL933. A
	derivative of this strain
	that expresses the
	inactive forms of Stx1
	and Stx2 from a plasmid
	also showed highly
	diminished cytotoxicity
	in vitro. Injection with
	either stx/ler deletion
	mutant or the respective
	Stx1/Stx2-expressing
	strain reduced the
	colonization of E. coli
	O157:H7 after infection of
	mice. Furthermore, if
	mice were immunized
	when pregnant, they
	passed the immunity on
	to their offspring, which
	were protected against E.
	coli O157:H7 infection (Liu
	et al., 2009).
	·

	Enteropathogenic E. coli
	(EPEC) also presents a
	vaccine alternative for
	EHEC as it is less
	pathogenic and shares
	the LEE pathogenicity
	island-encoded virulence
	genes. Immunization
	with EPEC raised
	neutralizing antibodies
	against EspB and intimin
	and conferred some
	protection against an
	EHEC infection.
	Vaccinated mice showed
	only mild disease
	phenotypes such as
	slight intestinal damage,
	while no kidney
	pathology could be
	detected (Calderon
	Toledo et al., 2011).
	Immunization of mice
	with a Salmonella
	Typhimurium vaccine
	strain expressing an
	inactive Stx2 variant
	consisting of the A2- and
	B-subunit of Stx2
	(Stx2 Δ AB) resulted in
	efficient colonization of
	the Peyer's patches and
	i of or o putorico and

	production of
	neutralizing antibodies.
	Serum collected from
	immunized mice was
	able to neutralize
	Stx2-mediated toxicity in
	vitro. However, there was
	only minimal protection
	observed when mice
	were challenged with a
	lethal dose of Stx2, and
	no protective effect was
	seen for kidney health
	(Rojas et al., 2010).
	Additionally, another
	group constructed a
	Salmonella
	Typhimurium strain
	expressing intimin,
	which was used to
	immunize mice orally
	(Oliveira et al., 2012). This
	immunization resulted
	in a significant increase
	in the levels of serum
	IgG and fecal IgA and
	reduced fecal shedding
	after an E. coli O157:H7
	infection (Oliveira et al.,
	2012). A boost
	vaccination 2 weeks after
	the initial immunization
	led to continuously high

	colonization levels of the
	vaccine strain and
	dissemination into the
	underlying tissues such
	as Peyer's patches and
	spleen (Oliveira et al.,
	2012). Oral immunization
	of mice with attenuated
	Salmonella expressing a
	hybrid protein consisting
	of EspA in combination
	with the C-terminus of
	intimin and the Stx2
	B-subunit (EIS, also see
	above) raised
	neutralizing antibodies
	against the respective
	proteins and protected
	mice from a lethal
	challenge with EHEC for
	more than 70 days. This
	period could be extended
	by a subcutaneous boost
	with purified EIS (Gu et
	al., 2011).
	Inoculation of mice with
	a recombinant
	Mycobacterium bovis
	BCG (rBCG) vaccine,
	which was modified to
	express the Stx2
	B-subunit, induced the
	production of

1	
	neutralizing antibodies
	against Stx2. Two
	high-dose
	intraperitoneal
	immunizations resulted
	in decreased colonization
	and increased survival
	after fatal challenge with
	a STEC strain (Fujii et al.,
	2012).
	The probiotic lactic acid
	bacterium Lactococcus
	lactis is considered a safe
	vaccine vehicle. Use of a
	L. lactis strain expressing
	the Stx2 A1-subunit (the
	A-subunit missing the 15
	C-terminal amino acids)
	for the immunization of
	mice resulted in
	increased levels of fecal
	and serum IgA.
	Immunized animals had
	significantly reduced
	intestinal and kidney
	damage. Furthermore,
	immunized mice showed
	increased survival after
	challenge with a lethal
	dose of Shiga toxin
	isolated from either E.
	coli O157:H7 or Shigella
	J

	dysenteriae (Sreerohini
	et al., 2019).
	L. lactis expressing the
	T3-secreted protein EspB
	did not yield neutralizing
	antibodies when used to
	infect mice. After an i.p.
	boost with recombinant
	EspB, however, specific
	IgG and IgA levels
	increased (Ahmed et al.,
	2013). In a follow-up
	study, the L. lactis was
	modified to secrete EspB
	after expression, which
	resulted in an increased
	production of
	neutralizing antibodies.
	Also, mice immunized
	with this version of the
	EspB-expressing L. lactis
	were protected against E.
	coli O157:H7 colonization
	(Ahmed et al., 2014). An L.
	lactis strain expressing
	the EspA protein has also
	been designed. However,
	this strain has so far
	only been used for the
	production of
	recombinant EspA, as
	described above. Here,
	too, a system to either

1	
	display the protein at
	the cell surface or secrete
	it from the cell will
	probably be needed but
	may be worthwhile
	(Luan et al., 2010). A
	recombinant L. lactis
	strain that displays the
	Stx1 B-subunit via
	albumin binding
	domains (single-domain
	non-immunoglobulin
	scaffolds) on the
	bacterial cell surface was
	recently designed by
	Zadravec et al. (2016).
	ELISA and FACS analysis
	confirmed the ability of
	this strain to bind Stx1.
	The immunogenicity
	and safety of this strain
	and its ability to protect
	against challenge were,
	however, not yet tested
	in animals.
	Lastly, a recombinant
	Lactobacillus acidophilus
	variant expressing EspA
	and the Tir central
	domain (EspA-Tir-M)
	inhibited A/E lesions
	formation by EHEC
	O157:H7 after

	pre-incubation in vitro.
	Oral immunization of
	mice induced the
	production of specific
	and systemic
	neutralizing antibodies
	and reduced EHEC
	O157:H7 colonization. It
	also inhibited intestinal
	A/E lesions and
	toxin-mediated organ
	damage (Lin et al., 2017a).
	Plant-Based Vaccines
	Plant-based vaccines
	have been trialed with
	the idea that they can
	easily be used for oral
	vaccination.
	Toxin-Targeted
	Plant-Based Vaccines
	The inactive A-subunit
	of Stx2 was produced by
	expression in a tobacco
	plant cell line (NT-1).
	Subsequent
	immunization of mice
	by feeding or by
	parenteral
	immunization with an
	oral boost resulted in
	increased Stx2 IgA and
	IgG levels. It was able to

	protect mice from a
	lethal challenge with an
	EHEC strain. Sera of
	immunized mice further
	neutralized toxicity in
	vitro (Wen et al., 2006).
	For the treatment of
	porcine edema disease,
	which is a severe and
	often fatal disease in pigs
	that is also mediated by
	Stx (in this case subtype
	Stx2e), Hamabata et al.
	have recently developed
	stx2eB-transgenic lettuce
	for immunization.
	Infection of piglets with
	STEC after oral
	vaccination by feeding
	the lettuce showed
	decreased levels of
	pathogenesis in
	lettuce-fed piglets
	(Hamabata et al., 2019).
	Virulence
	Protein-Targeted
	Vaccines
	The immunization
	capacity of plant-codon
	optimized intimin
	expressed in the NT-1

]
	tobacco cell line was also
	assessed by either i.p.
	injection of purified
	protein, feeding of
	transgenic plant cells, or
	a combination thereof.
	Here, mice immunized
	by injection and boosted
	by feeding developed
	neutralizing antibodies
	against intimin and
	reduced the time of
	bacterial shedding after
	challenge with E. coli
	0157:H7 (Judge et al.,
	2004). In another
	approach, chimeric
	protein composed of the
	LEE-encoded proteins
	EspA, intimin, and Tir
	(named EIT and further
	described above) was
	codon-optimized for
	expression in tobacco
	and canola plants. Using
	this plant-based
	expression strategy,
	recombinant EIT was
	prepared, and immune
	responses in mice were
	assessed after parenteral
	and oral immunization
	as well as after a
	combination. Here, a

			combination of subcutaneous injection and oral gavage yielded the highest immune responses and resulted in significantly reduced fecal shedding of E. coli O157:H7 after challenge (Amani et al., 2011).
December 31st, 2024	Research on Similar Bacteria	https://www.frontiersin.o rg/journals/cellular-and- infection-microbiology/a rticles/10.3389/fcimb.2020 .00169/full https://www.mdpi.com/2 072-6651/13/6/416	Antibiotics (not used) - Antibiotics are not recommended in any case for STEC infections in particular - Reasons include: - No proof that Antibiotics can actually help reduce or treat STEC infections - Can increase the risk of developing HUS as Shiga toxin production Can be increased - In some cases, bacterial SOS response (especially in the quinolone family which includes ciprofloxacin, ofloxacin, etc broad spectrum antibiotics) can be initiated, which can lead to mutations in the DNA of the bacteria

			causing them to become more resistant towards antibiotics Treatments for Salmonella - Probiotics - Are live bacteria or yeast that are beneficial to the body, particularly the digestive system - Keep the gut healthy - A few probiotics that are used for salmonella include lactobacilli and bifidobacterium - Lactobacillus inhibits STEC proliferation (an increase in numbers, typically rapid) as it produces hydrogen peroxide, lactic acid, IgA and leukocyte activity
January 2nd, 2025	Graph Added Research on Similar Bacteria	https://www.ers.usda.gov /data-products/chart-gal lery/gallery/chart-detail/ ?chartId=78625	<figure><section-header><text></text></section-header></figure>

	of E. coli produce a Shiga
	toxin that can severely
	damage a person's
	kidneys. The most
	well-known Shiga
	toxin-producing E. coli
	(STEC), STEC 0157, causes
	less than 1 percent of U.S.
	foodborne illnesses with
	an identifiable pathogen
	cause and only 2 percent
	of the cost of these
	pathogens. Yet, because
	it is a major cause of
	outbreaks and because it
	can cause kidney
	damage, STEC O157 is
	often in the news. ERS
	estimates that the 63,000
	illnesses caused by STEC
	O157 (formerly called E.
	coli O157) each year in
	the United States impose
	\$271.4 million in
	economic burden. Most
	people (97 percent)
	sickened with STEC 0157
	recover without being
	hospitalized. In roughly
	2,100 cases of STEC 0157
	illnesses, however, people
	are hospitalized; in 15
	percent of these cases
	the kidneys are
	-

1	
	affected—sometimes
	resulting in death,
	ongoing dialysis, or a
	kidney transplant. Cases
	in which the kidneys are
	affected account for 64.5
	percent of the economic
	burden from foodborne
	STEC 0157. This chart is
	based on a chart in the
	ERS report, Economic
	Burden of Major
	Foodborne Illnesses
	Acquired in the United
	States, May 2015." -
	copied from
	https://www.ers.usda.gov
	<u>/data-products/chart-gal</u>
	lery/gallery/chart-detail/
	<u>?chartId=78625</u>
	- Typically, individuals
	are able to recover from
	STEC without the use of
	antibiotics or other
	treatments
	- In some instances,
	treatment can also be
	supportive therapy
	- Rehydration
	therapy: used to prevent
	and treat dehydration,
	particularly caused by
	diarrhea

January 3rd, 2025	Research on Similar Bacteria	https://www.sciencedirec t.com/science/article/abs /pii/S1567134807001748 https://pmc.ncbi.nlm.ni h.gov/articles/PMC375161/	immune system, etc.) may not be able to recover as they are at a disadvantage essentially Connections to E. coli - "Salmonella enterica serovar Typhimurium (S. Typhimurium) and certain Escherichia coli are human pathogens that have evolved through the acquisition
			- Dialysis: treatment to clean blood and remove excess fluid from body when kidneys cannot function (especially from HUS) healthily enough - Can often be time-consuming - EXPENSIVE - the average cost can be upwards of \$60,000, something that many people, including the government, cannot afford for long periods of time - Not always the case as vulnerable groups (such as those under 5, older than 65, weakened

	of multiple virulence
	determinants by
	horizontal gene transfer.
	Similar genetic elements,
	as pathogenicity islands
	and virulence plasmids,
	have driven molecular
	evolution of virulence in
	both species. In addition,
	the contribution of
	prophages has been
	recently highlighted as a
	reservoir for pathogenic
	diversity.
	Characterization of
	horizontally acquired
	virulence genes has
	several clinical
	implications. First,
	identification of
	virulence determinants
	that have a sporadic
	distribution and are
	specifically associated
	with a pathotype and/or
	a pathology can be
	useful markers for risk
	assessment and
	diagnosis. Secondly,
	virulence factors widely
	distributed in
	pathogenic strains, but
	absent from
	non-pathogenic bacteria,

1	
	are interesting targets
	for the development of
	novel antimicrobial
	chemotherapies and
	vaccines. Here, we
	summarize the
	horizontally acquired
	virulence factors of S.
	Typhimurium,
	enterohemorrhagic E.
	coli O157:H7 and
	uropathogenic E. coli,
	and we describe their use
	in novel therapeutic
	approaches. Commensal
	bacteria, as Escherichia
	coli, have adapted to
	coexist with the human
	host without causing
	disease. Pathogenic
	bacteria have adapted to
	colonize the human host
	and have acquired the
	ability to cause clinically
	significant pathologies.
	Salmonella enterica and
	E. coli are closely related
	enterobacteria that
	diverged from a
	common ancestor
	100–150 million years ago
	(Doolittle et al., 1996). The
	genomes of the two
	species are essentially

l	
	superimposable and
	genome sequencing
	demonstrated that the
	median homology
	between non-pathogenic
	E. coli and Salmonella
	enterica serovar
	Typhimurium (S.
	Typhimurium) genomes
	is 80% (Blattner et al.,
	1997, McClelland et al.,
	2001). Both species have
	evolved into intestinal
	pathogens. In addition, E.
	coli strains have also
	evolved as
	extraintestinal
	pathogens. The
	molecular evolution of
	virulence of human
	pathogens S.
	Typhimurium and
	pathogenic E. coli is
	driven by the acquisition
	of multiple genetic
	elements (pathogenicity
	islands, plasmids, and
	prophages) by horizontal
	gene transfer. These
	horizontally acquired
	elements encode
	virulence factors
	necessary for
	colonization and

1	
	replication within the
	host, neutralization of
	host defences and spread
	into new hosts. Main
	virulence determinants
	used by S. Typhimurium
	and/or E. coli include
	adhesins, type III
	secretion systems (T3SS)
	that inject effector
	proteins into host cells,
	toxins and iron
	acquisition systems. Both
	non-typhoidal S.
	enterica and pathogenic
	E. coli are increasingly
	resistant to multiple
	antibiotics. For example,
	the resistance of
	uropathogenic E. coli
	strains to
	trimethoprim-sulfamet
	hoxazole and
	fluoroquinolones, the
	drugs of choice for the
	treatment of urinary
	tract infections (UTI),
	has become a major
	concern both in
	hospitals and in the
	community (Gupta et al.,
	2001). Hence it is urgent
	to develop better
	prevention and

[
		treatments against these
		infections. The
		implication of
		horizontally acquired
		virulence factors in
		clinical issues is
		multiple. First, genes
		that have a sporadic
		distribution, associated
		with specific pathology
		and/or epidemic
		features, can be used as
		markers of infection to
		improve molecular
		epidemiology and
		diagnostic methods.
		Secondly, genes that are
		stable in pathogenic
		strains, and absent from
		non-pathogenic strains,
		can provide novel
		therapeutic targets and
		novel vaccine strategies.
		Here, we present a brief
		overview of horizontally
		acquired genetic
		elements from S.
		Typhimurium and
		pathogenic E. coli that
		play a role in virulence
		and we provide examples
		of the implications of
		these studies for the
		development of novel

			therapeutic approaches." - copied from https://www.sciencedirec t.com/science/article/abs /pii/S1567134807001748 Treatments - Probiotics - Bifidobacterium inhibits the production of Stx production (not growth) by increasing the pH of the stomach and increasing the
			- Probiotics - Bifidobacterium inhibits the production of Stx production (not growth) by increasing
			acid
January 12th, 2025	Rough Idea for Detection Method Created	N/A	 Replicate intestinal mucus as it activates stx Research into differences between the replicated mucus and actual live mucus and if it interacts with stx differently Add something that could make the mucus glow a certain colour if stx is activated or if the e coli is detected somehow Like the synbio thing with the bacteria art Similar to covid testing kit, e coli is swabbed

			with a q-tip and then put into the mucus liquid and after a few minutes, if it turns x colour, it has e coli and if it turns y colour or doesn't change colours it doesn't have e coli - Test on 5 samples
January 13th, 2025	Looking into Rough Detection Method Idea	https://pmc.ncbi.nlm.ni h.gov/articles/PMC933183 5/ https://science.ok.ubc.ca/ 2020/11/12/ubco-research -contributes-to-new-und erstanding-of-gastro-inte stinal-mucus/ https://www.nature.com/ articles/s41598-022-11468- 2	Background - Intestinal mucus can be replicated, although it seems a little difficult Other papers - Using phage-based assays - Phage: virus that infects bacteria - Assay: lab test to find the amount of a specific substance
January 15th, 2025	Mentor Meeting	N/A	Discussed about creating or looking into previous detection methods Contacted another mentor, Mr. Gustavo Marchani, regarding potential labs to detect E. coli on lettuce

January 17th, 2025	Mentor Meeting	N/A	Meeting with Ms. Maja Omerovic, Mr. Gustavo Marchani and Dr. Iaci Soares to discuss detection methods. New idea to conduct a PCR test on E. coli and use primers.
			To Research - Primers - PCR - Scientific papers on E. coli that contaminates lettuce - Papers working with primers - Current Protocol
January 18th, 2025	Detection Method	https://pmc.ncbi.nlm.ni h.gov/articles/PMC6131372 /# https://pmc.ncbi.nlm.ni h.gov/articles/PMC734774 2/	Research - Study what primers are - Look into textbooks or videos - Ask Dr. B for biochem textbook - Look into PCR - Look for scientific papers on E.coli that contaminates lettuce - Look for papers that have worked with primers - Current protocol

Laurana 10th 0005	Detection Method	Comorale all Diologram	Duine en a chant
January 19th, 2025	Detection Method	Campbell Biology	- Primer: a short
		https://www.idtdna.com/	single-stranded nucleic
		pages/community/blog/	acid that initiates DNA
		<u>post/dna-synthesis-the-</u>	synthesis
		basics	- "A primer is a segment
		https://www.nature.com/	of new strand
		<u>scitable/definition/prim</u>	(complementary to the
		<u>er-305/</u>	template) with a 3'
		https://www.sciencedirec	hydroxyl group to which
		<u>t.com/topics/biochemist</u>	nucleotides can be
		ry-genetics-and-molecul	added"
		<u>ar-biology/primase</u>	- Synthetic primers are
		https://www.sciencedirec	also known as
		<u>t.com/topics/neuroscienc</u>	oligonucleotides
		<u>e/dna-polymerase-i</u>	- DNA synthesis: the
		https://www.genome.gov	process of creating a new
		<u>/genetics-glossary/Prime</u>	DNA strand from a
		<u>r</u>	template strand
		https://www.youtube.co	- Primase is an enzyme
		<u>m/watch?v=a5jmdh9AnS</u>	that synthesizes RNA
		<u>4</u>	primers
			- Synthesize: produce
			through biological or
			chemical processes
			Required as DNA
			polymerase cannot
			initiate polymer
			synthesis on
			single-stranded DNA
			templates
			- DNA polymerase is an
			enzyme that forms new
			DNA molecules through
			assembling nucleotides
			0

			(which are the basic
			building blocks of
			DNA/RNA)
			- "Primase starts a
			complementary RNA
			chain with a single RNA
			nucleotide and adds RNA
			nucleotides one at a
			time, using the parental
			DNA strand as a
			template. The completed
			primer, generally five to
			ten nucleotides long, is
			thus base-paired to the
			template strand. The
			new DNA strand will
			start from the 3' end of
			the RNA primer." -
			Campbell Biology
January 23rd, 2025	Detection Method	https://www.genome.gov	- Primers dictate the
Junuary 2010, 2020		/genetics-glossary/Polym	segment of DNA that is
		erase-Chain-Reaction-PC	to be copied in PCR
		<u></u> R	- Results in millions or
		<u>https://medicine.yale.edu</u>	billions of copies of the
		/keck/dna/protocols/gui	DNA segment in a short
		delines/	time
			- Amplified DNA can be
			used in lab procedures
			Can be used to diagnose
			or detect infectious
			diseases, like E. coli
			- Amplification increases
			quality size
			1

1	
	- "PCR involves using
	short synthetic DNA
	fragments called primers
	to select a segment of
	the genome to be
	amplified, and then
	multiple rounds of DNA
	synthesis to amplify that
	segment." - NHGRI
	Parameters - Yale
	- 20-30 nucleotides in
	length.
	- 50% G/C content.
	- G & C "clamps" on the 5'
	and 3' ends (at least a
	single G or C residue.)
	- Avoid multiple
	Thymidine residues on 3'
	and 5' ends.
	- Avoid primers with
	long runs (more than 4)
	of a single base.
	- Avoid primers with
	secondary structures or
	that can hybridize to
	form dimers or hairpins.
	These can be easily
	predicted if a primer
	design program is used
	such as primer select.
	- Melting temperature
	550-65oC.

			 Check primers for specificity in annealing to template. Primers should be located at least 30-40 bases upstream of the area of interest in the sequence read.
January 24th, 2025	Detection Method	https://www.researchgat e.net/figure/List-of-prim ers-used-for-the-detectio n-of-E-coli-16S-rRNA-gen e-stx1-and-stx2-genes tbl 1 305526980 https://www.researchgat e.net/figure/Primer-sequ ences-for-E-coli-STEC-an d-six-O-antigen-amplific ations tbl1 333091291 https://www.iss.it/docum ents/20126/0/EURL-VTEC Method 02 Rev 1.pdf/b51 73cbd-5789-c729-b0c3-81d a039e88c7?t=164430904971 9 https://journals.asm.org/ doi/10.1128/spectrum.0377 3-23 https://pmc.ncbi.nlm.ni h.gov/articles/PMC87549/ https://pmc.ncbi.nlm.ni	Criteria - Addgene - Length of 18-24 bases - 40-60% G/C content - Start and end with 1-2 G/C pairs - Melting temperature (Tm) of 50-60°C - Primer pairs should have a Tm within 5°C of each other - Primer pairs should not have complementary regions Look into previously used primers

January 26th, 2025	Mentor Meeting	N/A	Discuss all other aspects of project with mentor.
January 29th, 2025	Mentor Meeting	N/A	Meeting with mentor and Mr. Gus to discuss primers and detection method for E. coli.
February 2nd, 2025	Detection Method	N/A	Purpose - Detect E. coli in a lettuce sample (more specifically pathogenic E. coli like STEC) - Can be applied wider to ensure that food is safe to consume and to protect public health - Potentially determine if alternative, faster ways could be used (the innovation part) - Eg. colony PCR - would it work, accuracy rate, etc. - Colony PCR can take around 1 hour while normal PCR can take between 6 hours to a day Expected result - This will work and E. coli will be detected in both colony and normal PCR

	1]
			- Prediction: normal PCR
			will have a higher
			accuracy rate than
			colony PCR but will take
			longer (tradeoff)
			Materials
			- PCR
			- Thermocycler
			- Primers
			- Actin Primers
			- ybbW Primers
			- stx2 Primers
			Procedure
			- Obtain store-bought
			lettuce
			- Prepare samples
			- Extract DNA
			- Could try colony PCR to
			speed up the process
			- Setup the PCR
			- Run the PCR
			- Gel electrophoresis
February 3rd, 2025	Detection Method	N/A	Lettuce: romaine, few
			leaves per test
			Homogenize: blending
			Filter: probably
			Washing: If we're doing a
			single experiment with
			only 1 or 2 samples, then
			I would say that we
			shouldn't wash the

			lettuce since its more realistic. Only if the accuracy would be severely undermined then it would probably be fine to wash. However, if we do an experiment that, for example, compares the difference between washing and not washing lettuce then that having both would be nice
February 6th, 2025	Meeting	N/A	Meeting with Mr. Gustavo Marchani to discuss detection method further and gain clarification on certain aspects of project
February 18th, 2025	Research Paper Started Draft Experiment Process Sent to Mr. Gustavo Marchani	N/A	
February 19th, 2025	Add Basic Information into Research Paper	N/A	

February 21st, 2025	Add Information into Research Paper	Previously used sources	
February 22nd, 2025	Work on Research Paper	Previously used sources	
February 23rd, 2025	Work on Research Paper	Previously used sources	
February 28th, 2025	Work on Detection Method Work on Research Paper	Previously used sources	
March 6th, 2025	Work on Research Paper	Previously used sources	
March 7th, 2025	Work on Research Paper	Previously used sources	
March 9th, 2025	Work on Research Paper	Previously used sources	
March 12th, 2025	Work on Detection Procedure	N/A	
March 14th, 2025	Work on Research Paper	Previously used sources	
March 16th, 2025	Work on Research Paper	Previously used sources	Add citations into text and put work in own words

March 17th, 2025	Work on Research Paper	Previously used sources	Understand more complex sections of text or literature
March 18th, 2025	Second-to-final Draft of all Components, Including Paper, Completed Make changes to proposal based on feedback	N/A	
March 19th, 2025	Draft of CYSF Platform Requirements Completed and Sent to Mentor(s) Procedure Completed	N/A	
March 20th, 2025	CYSF Platform Completed Video Recorded Mentor Meeting	N/A	APA citations checked by Ms. Madison Paul and Ms. Adrienne Carr Research paper checked by Ms. Maja Omerovic Mentor Meeting to Discuss Gel Electrophoresis