
CYSF - A Practical Weapon Detection System for Enhanced Security Using
Artificial Intelligence - By Alveena Ashiq - Grade 8 - LOGBOOK

Logbook at a glance

Dec 23, 2024 I filled it out in the ‘Basic Project Info’ section on the CYSF
platform.* My project is innovation-based.

*My school CYSF coordinator invited me onto the platform.

Dec 24, 2024 -
Dec 27, 2024

Did online research on gun violence and severity. Did some
brainstorming to come up with an idea for proposing a
solution to mitigate the issue.

Dec 28, 2024 -
Dec 31, 2024

Did online research on machine learning and learned about
supervised learning. Tried to find an open source dataset for
training a custom model to detect weapons. Learned about
YOLO and the library called Ultratlytics that supports YOLO
for model training and inference.

Jan 1, 2025 -
Jan 4, 2025

Started coding Python script for model training with the
downloaded dataset from various sources. Tried different
epoch settings and different model profiles and tested on
both my laptop and the Raspberry PI to select the most
suitable models to run on. The open dataset from Kaggle
was chosen finally as the model trained with this dataset
performed the best.

Jan 5, 2025 -
Jan 8, 2025

Started coding an application to run the model for weapon
detection. Ordered Raspberry PI board and the Raspberry PI
camera from Amazon. Also ordered toy guns from
halloweencostumes.ca and a toy knife from Amazon for
testing and demonstration.

Jan 9, 2025 -
Jan 12, 2025

Registered to Twilio for Email and SMS notification. Included
the Email and SMS notification features in my application.
Received Raspberry PI from Amazon. Prepared the
Raspberry PI by installing the Raspberry PI camera and
installed the required Python libraries such as OpenCV,
Ultralytics.

Jan 13, 2025 -
Jan 17, 2025

I had a lot of school assignments this week; therefore, I took
a break from working on CYSF.

Jan 18, 2025 -
Jan 21, 2025

I had a lot of school assignments this week; therefore, I took
a break from working on CYSF.

Jan 22, 2025 -
Jan 25, 2025

Modified the Python application written for laptop to run on
Raspberry PI without a Graphical User Interface. Performed
thorough testing of both the applications (on laptop and on
Raspberry PI).

Jan 26, 2025 -
Jan 29, 2025

Started working on the poster. Completed the ‘Problem’
section of my project.

Jan 30, 2025 -
Feb 2, 2025

Completed the ‘Method’ section. Included some snapshots of
my developed application, training dataset samples and the
Raspberry PI prototype. The prototype prepared for the
school science fair is temporary. If I get the opportunity, I am
working on building an enclosure for my final demonstration
at the CYSF science fair.

Feb 3, 2025 -
Feb 4, 2025

Completed the Analysis, Conclusion, Citations and
Acknowledgement sections. Worked on formatting the poster
materials for printing.

Feb 5, 2025 -
Feb 6, 2025

Printed poster pages from Staples and finished glueing all
the sheets of paper onto my trifold.

February 7,
2025

Attended my school science fair 2025.

February 7,
2025

Got selected to attend CYSF 2025

Feb 8, 2025 -
March 7, 2025

Took a break from CYSF

March 7, 2025 -
March 14, 2025

Created a Plexiglass enclosure for my YOLOv8 Nano model,
uploaded images onto CYSF platform

March 15, 2025
- March 18,
2025

Created slide show presentation for project and used it to
create a 10 minute long video on my project. Uploaded
video, slideshow and logbook onto platform. At this point, all
CYSF platform elements complete.

March 19, 2025
- April 9, 2025

Presentation rehearsals, practiced speech

April 10, 2025 -
April 12, 2025

Attended CYSF 2025

A detailed log of research done

Dec 23, 2023 I filled it out in the ‘Basic Project Info’ section on the CYSF
platform.* My project is research/study based.

*My school CYSF coordinator invited me onto the platform.

I filled these on the CYSF platform:

Name of Project: A Practical Weapon Detection System for Enhanced Security
Using Artificial Intelligence

Grade: 8

Project type: Innovation

Language: English

Project Category: Mathematics and Computer Science

Project Topics: Computer Science, Engineering, Technology

Brief Description: A weapons detection system

Jan 26, 2025 -
Jan 29, 2025

Started working on the poster. Completed the ‘Problem’
section of my project.

PROBLEM

Gun violence is a daily scourge that jeopardizes our most fundamental right, the right to
life. Every day, more than 600 people die as a result of firearm violence, which is fueled
in part by easy access to firearms, whether legal or illegal [1]. Other root causes of gun
violence include but are not limited to [2]:

● Income inequality
● Poverty
● Underfunded public housing
● Under-resourced public services
● Underperforming schools
● Lack of opportunity and perceptions of hopelessness

Figure 1: Over 250,000 people died from firearms in 2019, with the majority of deaths being
homicides, especially in countries like Brazil and the United States. [3]

As we are in North America, this project primarily focuses on Canada and the United
States. Both countries are currently working to prevent gun violence. For example, in
Canada, in March 2022, the Government announced a new federal investment of $250
million through the Building Safer Communities Fund (BSCF). The fund will help
municipalities and Indigenous communities prevent gun and gang violence by tackling
its root causes [4].

However, even with these governmental precaution measures in place, North America
is still experiencing gun violence daily. Therefore, the question is:

How can we make our cities more secure against gun and weapon violence?

Jan 30, 2025 -
Feb 2, 2025

Completed the ‘Method’ section. Included some snapshots of
my developed application, training dataset samples and the
Raspberry PI prototype. The prototype prepared for the
school science fair is temporary. I am working on building an
enclosure for my final demonstration at the CYSF science fair
if I get the opportunity.

 METHOD

This project focuses on developing a machine learning [5] algorithm and creating an
app that can accurately detect weapons using cameras and transmit notifications in
real-time via email and SMS for immediate action against potential violence. Early
detection of firearms and other weapons can prevent violence from happening and save
hundreds of lives.

OBJECT DETECTION

The YOLO (You Only Look Once) model is used in this project to detect weapons.
YOLO is a popular object detection [6] model known for its speed and accuracy. It was
first introduced by Joseph Redmon in 2016 [7]. The foundation of YOLO is a neural
network [8] that falls under deep learning [9], a subset of machine learning. A key step
in developing a machine learning solution is training. Typically, pre-trained models are
available as open source that are trained to detect common objects, such as people,
cars, etc., for quickly deploying a machine-learning solution. However, no pre-trained
model was found freely available to satisfy the requirements of this project after a
comprehensive search over the internet. Therefore, this project's first step was to train
the YOLO model to detect weapons. I used a dataset containing various types of guns
and knives to train the model to detect weapons for demonstration.

DEVELOPMENT ENVIRONMENT AND THE PLATFORM

I chose Python as the programming language and used Visual Studio Code for
development. As one of the most popular programming languages, Python offers
several benefits, including [10]:

1. Python runs on major platforms like Windows, macOS, Linux, Raspbian,
and more.

2. It provides extensive library support for data analysis and machine
learning, including libraries such as NumPy, OpenCV, PyTorch, and others.

3. Python is ideal for rapidly validating a proof of concept or building a
prototype.

Visual Studio Code offers a user-friendly interface for editing, debugging, and running
the developed code [11]. In this work, I created and demonstrated I prototype on two
different platforms:

1. A Windows-based workstation: This setup demonstrates the suitability of I
system for a central monitoring station, where it can be connected to multiple IP
security cameras to detect weapons.

2. An integrated Raspberry Pi-based [12] camera system: Equipped with
weapon detection analytics, this edge device provides a cost-effective solution
that does not require a central monitoring station for operation.

TRAINING: Supervised learning [13] is the learning approach suitable for this project. It
is akin to classroom teaching, where the teacher shows labelled examples—such as
apples and bananas—and the students learn to recognize these objects when they
encounter them later. Other types of learning include unsupervised learning [14] and
reinforcement learning [15].

In my approach, I used images of knives and guns, labelling them as weapons. Instead
of capturing or collecting my own dataset, which is time-consuming and
labour-intensive, I leveraged open-source images. These datasets are freely available
on the internet from several platforms, including Kaggle [16], Roboflow [17], and various
GitHub repositories. After careful consideration, I chose a dataset from Kaggle to train
my YOLOv8 model. The comprehensive dataset contains 8,149 annotated images of
knives and various types of guns [18].

Figure 2: Some labelled data of guns and knives

YOLOv8 MODELS
While YOLOv8 is compatible with multiple frameworks, it is primarily supported by the
Ultralytics library [19], which simplifies implementation. Therefore, this work has used
the Ultralytics Python library for model training and development.

YOLOv8 offers five model profiles, ranging from the lightweight 'Nano' (YOLOv8n) to the
high-capacity 'Extra Large' (YOLOv8x) profile [20]. The choice of a suitable profile
depends on the application requirements, available resources, and computational
power. The key tradeoff among these profiles is accuracy versus speed—smaller
models provide faster inference but lower accuracy. In contrast, larger models offer
higher accuracy at the cost of slower inference speed and increased computational
demands.

Given this tradeoff, I selected the 'Large' profile (YOLOv8l) for the Windows-based
workstation application, as these systems typically have sufficient computational power
to handle it. However, due to the minimal computational resources of the Raspberry Pi, I
used the 'Nano' profile (YOLOv8n) for developing the integrated weapon detection
system.

The pre-trained Nano [21] and Large [22] models do not include knife or gun detection
by default. Therefore, I trained the models using a labelled dataset downloaded from
Kaggle [18]. The figure below shows the code snippet used for training.

Figure 3: Python script for training YOLOv8m model with weapon detector dataset

The Ultralytics train() function for model training accepts several parameters. One key
parameter is 'data,' which specifies the path to the configuration file (data.yml). This
configuration file contains the locations of the training and validation images, the
number of classes in the dataset and their names.

In my case, I have a single class called "weapon." However, this class encompasses a
variety of objects, such as knives, guns, and rifles.

The "epochs" parameter defines the number of training iterations. I set this value to 100.

Figure 4 shows a code snippet from the developed application. The trained model is
loaded to run predictions on images captured by the webcam.

Figure 4: A code snippet from the developed application

A snapshot of the developed application is shown in Figure 5. The application interface
is designed using the Qt library for Python. Currently, the application supports only a
single camera, but the concept can be easily scaled to accommodate multiple cameras.
The interface includes a live view, a snapshot view of alarms, an alarm list, and an input
configuration window where users can enter an email address and phone number to
receive real-time notifications when a weapon is detected via email or SMS.

Figure 5: Weapon detection application interface

Figure 6 shows samples of email and SMS notifications. I used Twilio for these
notifications, a platform that allows developers to create applications to support
messaging over various media, such as email and SMS.

Figure 6: Real-time weapon detection notification via Email and SMS

The developed program can also run on an edge device, such as a Raspberry Pi with
an integrated camera, for standalone applications. Due to the limited computational
power of the Raspberry Pi, I used the YOLOv8 'nano' model to train on the weapon
dataset. Figure 7 show the Raspberry Pi 4 hardware board with a camera. This
hardware can be enclosed in a box to create a cost-effective integrated camera device,
which can function as a standalone edge device for real-time weapon detection.

Figures 7: Raspberry PI camera prototype with integrated weapon detection analytics

The software on Raspberry PI does not use a Graphical User Interface (GUI) to run as it
is an edge device and will never be connected to a monitor for practical application. This
approach will also help saving some CPU load so that the machine learning analytic's
performance on this limited power device is not affected. The cost breakdown for the
Raspberry Pi-based smart weapon detection camera is provided below:

Table 1: Approximate cost breakdown for a Raspberry 4 PI based integrated camera for
weapon detection

Feb 3, 2025 -
Feb 4, 2025

Completed the Analysis, Conclusion, Citations and
Acknowledgement sections. Worked on formatting the poster
materials for printing.

PERFORMANCE ANALYSIS
PERFORMANCE ANALYSIS

PERFORMANCE ANALYSIS

Training for both "Large" and "Nano" YOLOv8 models was executed for 100 epochs
with a batch size of 8. The figures below show the performance results achieved with
both models

Figure 8: YOLOv8 Lange model training results from over 100 epochs using the weapon
dataset

Figure 9: YOLOv8 Nano model training results from over 100 epochs using the weapon
dataset

The figures illustrate different types of losses: "box" loss (which measures how well the
predicted bounding box overlaps with the labelled data), classification loss "cls" (which
indicates how accurately the model predicts the labelled classes), and distribution focal
loss "dfl" (which represents how well the algorithm predicts the presence of an object)
[23]. As the training process progresses through multiple epochs, the decreasing trend
of these losses signifies the model's improving ability to detect weapons. Additionally,
the increase in precision, recall, and mean average precision (mAP) further indicates
the model's enhanced performance over time.

Precision measures how accurately the model identifies weapons [24]. In an ideal
scenario, if the model correctly classifies every detected weapon without any false
positives, its precision would be 100%. However, if the model frequently misclassifies
non-weapons as weapons (false positives), its precision decreases.

On the other hand, recall measures how well the model recognizes a weapon when it
appears in front of the camera [24]. If the model detects every weapon instance without
missing any (false negatives), its recall would be 100%.

In practice, achieving 100% precision and recall is nearly impossible. There is usually a
tradeoff between the two—improving precision often comes at the cost of recall, and

vice versa. After training for 100 epochs, the best models we adopted in our prediction
application achieved the following precision and recall values:

Table 2: Precison and recall values of the trained YOLOv8l and YOLOv8n models

Figure 10 shows the models' validation performance for a batch of images:

Figure 10: Model validation performance for a batch of labelled data

As the figure shows, both models perform well in detecting weapons. However, the
nano model's confidence score, which reflects the model's certainty in its predictions, is
slightly lower. Consequently, the nano model is more likely to miss weapons when they
appear in front of the camera. This behaviour is expected and is discussed in the
Method section.

CONCLUSION

In this project, I have demonstrated a practical application of machine learning to detect
weapons in real time, helping to prevent violence before it occurs. Violence involving
various types of weapons, such as knives, guns, and rifles, has increased significantly
at an alarming rate over the past couple of decades worldwide.

To address this issue, I propose two weapon detection systems:

1. A central monitoring station-based application capable of analyzing streaming video
from commercial IP cameras

2. A cost-effective, standalone edge camera device with built-in weapon detection
analytics. The monitoring station application is demonstrated with a single camera feed
but is easily scalable to support multiple cameras. Additionally, the developed system
can notify users or authorities of any detected weapon activity in real-time via email or
SMS, enabling immediate response and intervention.

CITATIONS

[1] International, Amnesty. “Gun Violence - Key Facts.” Amnesty.org, Amnesty
International, 2024, www.amnesty.org/en/what-we-do/arms-control/gun-violence/.

[2] EFSGV. Efsgv.org Educational Fund to Stop Gun Violence the ROOT CAUSES of
GUN VIOLENCE POLICYMAKERS MUST ADDRESS the SOCIAL and ECONOMIC
INEQUALITIES THAT ARE the ROOT CAUSES of GUN VIOLENCE in IMPACTED
COMMUNITIES of COLOR. Mar. 2020,
efsgv.org/wp-content/uploads/2020/03/EFSGV-The-Root-Causes-of-Gun-Violence-Marc
h-2020.pdf.

[3] World Population Review. “Gun Deaths by Country 2020.”
Worldpopulationreview.com, World Population Review, 2021,
worldpopulationreview.com/country-rankings/gun-deaths-by-country.

[4] Canada, Public Safety. “Parliamentary Committee Notes: Complementary Firearms
and Gun Violence Measures.” Securitepublique.gc.ca, 2023,

www.securitepublique.gc.ca/cnt/trnsprnc/brfng-mtrls/prlmntry-bndrs/20240220/14-en.as
px. Accessed 2 Feb. 2025.

[5] Wikipedia Contributors. “Machine Learning.” Wikipedia, Wikimedia Foundation, 29
Apr. 2019, en.wikipedia.org/wiki/Machine_learning.

[6] Wikipedia Contributors. “Object Detection.” Wikipedia, Wikimedia Foundation, 27
July 2019, en.wikipedia.org/wiki/Object_detection.

[7] Redmon, Joseph. “YOLO: Real-Time Object Detection.” Pjreddie.com, 2012,
pjreddie.com/darknet/yolo/.

[8] “Neural Network (Machine Learning).” Wikipedia, 18 Feb. 2024,
en.wikipedia.org/wiki/Neural_network_(machine_learning).

[9] Wikipedia Contributors. “Deep Learning.” Wikipedia, Wikimedia Foundation, 10 May
2019, en.wikipedia.org/wiki/Deep_learning.

[10] Wikipedia Contributors. “Python (Programming Language).” Wikipedia, Wikimedia
Foundation, 4 May 2019, en.wikipedia.org/wiki/Python_(programming_language).

[11] Microsoft. “Visual Studio Code.” Visualstudio.com, Microsoft, 2024,
code.visualstudio.com/.

[12] Ltd, Raspberry Pi (Trading). “Buy a Raspberry Pi 4 Model B.” Raspberry Pi, 2023,
www.raspberrypi.com/products/raspberry-pi-4-model-b/.

[13] Wikipedia Contributors. “Supervised Learning.” Wikipedia, Wikimedia Foundation,
20 Mar. 2019, en.wikipedia.org/wiki/Supervised_learning.

[14] Wikipedia Contributors. “Unsupervised Learning.” Wikipedia, Wikimedia
Foundation, 25 Mar. 2019, en.wikipedia.org/wiki/Unsupervised_learning.

[15] Wikipedia Contributors. “Reinforcement Learning.” Wikipedia, Wikimedia
Foundation, 20 May 2019, en.wikipedia.org/wiki/Reinforcement_learning.

[16] Kaggle. “Kaggle: Your Home for Data Science.” Kaggle.com, 2024,
www.kaggle.com/.

[17] “Roboflow: Go from Raw Images to a Trained Computer Vision Model in Minutes.”
Roboflow.ai, roboflow.com/.

[18] “Weapon Detector Object Detection Dataset and Pre-Trained Model by Joo
Assalim.” Roboflow, 2023,

universe.roboflow.com/joo-assalim-kbrtb/weapon-detector-pbxol. Accessed 2 Feb.
2025.

[19] “Ultralytics | Revolutionizing the World of Vision AI”, www.ultralytics.com.

[20] Ultralytics. “YOLOv8.” Docs.ultralytics.com, 12 Nov. 2023,
docs.ultralytics.com/models/yolov8/.

[21] https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n.pt
(Download)

[22] https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l.pt (Download)

[23] Ultralytics. “YOLO Performance Metrics.” Docs.ultralytics.com, 12 Nov. 2023,
docs.ultralytics.com/guides/yolo-performance-metrics/.

[24] Wikipedia Contributors. “Precision and Recall.” Wikipedia, Wikimedia Foundation,
19 Apr. 2019, en.wikipedia.org/wiki/Precision_and_recall.

ACKNOWLEDGEMENT

I want to acknowledge my Science Fair coordinator, Ms. Heather Lai, for making
Science Fair possible and my parents, specifically my dad, for helping me build and put
everything together.

I also want to acknowledge anyone whose work I used and credited in this project.

https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n.pt

	Figure 1: Over 250,000 people died from firearms in 2019, with the majority of deaths being homicides, especially in countries like Brazil and the United States. [3]
	OBJECT DETECTION
	DEVELOPMENT ENVIRONMENT AND THE PLATFORM
	
	YOLOv8 MODELS
	PERFORMANCE ANALYSIS
	PERFORMANCE ANALYSIS

