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Logbook at a glance 

Dec 23, 2024 I filled it out in the ‘Basic Project Info’ section on the CYSF 
platform.* My project is innovation-based. 
 
*My school CYSF coordinator invited me onto the platform. 

Dec 24, 2024 - 
Dec 27, 2024  

Did online research on gun violence and severity. Did some 
brainstorming to come up with an idea for proposing a 
solution to mitigate the issue. 

Dec 28, 2024 - 
Dec 31, 2024 

Did online research on machine learning and learned about 
supervised learning. Tried to find an open source dataset for 
training a custom model to detect weapons. Learned about 
YOLO and the library called Ultratlytics that supports YOLO 
for model training and inference.  

Jan 1, 2025 - 
Jan 4, 2025 

Started coding Python script for model training with the 
downloaded dataset from various sources. Tried different 
epoch settings and different model profiles and tested on 
both my laptop and the Raspberry PI to select the most 
suitable models to run on. The open dataset from Kaggle 
was chosen finally as the model trained with this dataset 
performed the best.  

Jan 5, 2025 -  
Jan 8, 2025 

Started coding an application to run the model for weapon 
detection. Ordered Raspberry PI board and the Raspberry PI 
camera from Amazon. Also ordered toy guns from 
halloweencostumes.ca and a toy knife from Amazon for 
testing and demonstration. 

Jan 9, 2025 -  
Jan 12, 2025 

Registered to Twilio for Email and SMS notification. Included 
the Email and SMS notification features in my application. 
Received Raspberry PI from Amazon. Prepared the 
Raspberry PI by installing the Raspberry PI camera and 
installed the required Python libraries such as OpenCV, 
Ultralytics.   

Jan 13, 2025 -  
Jan 17, 2025 

I had a lot of school assignments this week; therefore, I took 
a break from working on CYSF. 



Jan 18, 2025 -  
Jan 21, 2025 

I had a lot of school assignments this week; therefore, I took 
a break from working on CYSF. 

Jan 22, 2025 -  
Jan 25, 2025 

Modified the Python application written for laptop to run on 
Raspberry PI without a Graphical User Interface. Performed 
thorough testing of both the applications (on laptop and on 
Raspberry PI).  

Jan 26, 2025 -  
Jan 29, 2025 

Started working on the poster. Completed the ‘Problem’ 
section of my project.  

Jan 30, 2025 -  
Feb 2, 2025 

Completed the ‘Method’ section. Included some snapshots of 
my developed application, training dataset samples and the 
Raspberry PI prototype. The prototype prepared for the 
school science fair is temporary. If I get the opportunity, I am 
working on building an enclosure for my final demonstration 
at the CYSF science fair.     

Feb 3, 2025 -  
Feb 4, 2025 

Completed the Analysis, Conclusion, Citations and 
Acknowledgement sections. Worked on formatting the poster 
materials for printing.  

Feb 5, 2025 -  
Feb 6, 2025 

Printed poster pages from Staples and finished glueing all 
the sheets of paper onto my trifold.  

February 7, 
2025 

Attended my school science fair 2025. 

February 7, 
2025 

Got selected to attend CYSF 2025 

Feb 8, 2025 - 
March 7, 2025 

Took a break from CYSF 

March 7, 2025 - 
March 14, 2025 

Created a Plexiglass enclosure for my YOLOv8 Nano model, 
uploaded images onto CYSF platform 

March 15, 2025 
- March 18, 
2025 

Created slide show presentation for project and used it to 
create a 10 minute long video on my project. Uploaded 
video, slideshow and logbook onto platform. At this point, all 
CYSF platform elements complete. 

March 19, 2025 
- April 9, 2025 

Presentation rehearsals, practiced speech 



April 10, 2025 - 
April 12, 2025 

Attended CYSF 2025 
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Jan 26, 2025 -  
Jan 29, 2025 

Started working on the poster. Completed the ‘Problem’ 
section of my project.  

 
PROBLEM 

  

Gun violence is a daily scourge that jeopardizes our most fundamental right, the right to 
life. Every day, more than 600 people die as a result of firearm violence, which is fueled 
in part by easy access to firearms, whether legal or illegal [1]. Other root causes of gun 
violence include but are not limited to [2]: 

●  Income inequality 
●  Poverty 
●  Underfunded public housing 
●  Under-resourced public services 
●  Underperforming schools 
●  Lack of opportunity and perceptions of hopelessness 

  

 



Figure 1: Over 250,000 people died from firearms in 2019, with the majority of deaths being 
homicides, especially in countries like Brazil and the United States. [3] 

  

As we are in North America, this project primarily focuses on Canada and the United 
States. Both countries are currently working to prevent gun violence. For example, in 
Canada, in March 2022, the Government announced a new federal investment of $250 
million through the Building Safer Communities Fund (BSCF). The fund will help 
municipalities and Indigenous communities prevent gun and gang violence by tackling 
its root causes [4]. 

However, even with these governmental precaution measures in place, North America 
is still experiencing gun violence daily. Therefore, the question is: 

How can we make our cities more secure against gun and weapon violence? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Jan 30, 2025 -  
Feb 2, 2025 

Completed the ‘Method’ section. Included some snapshots of 
my developed application, training dataset samples and the 
Raspberry PI prototype. The prototype prepared for the 
school science fair is temporary. I am working on building an 
enclosure for my final demonstration at the CYSF science fair 
if I get the opportunity.     

 
 METHOD 

 

This project focuses on developing a machine learning [5] algorithm and creating an 
app that can accurately detect weapons using cameras and transmit notifications in 
real-time via email and SMS for immediate action against potential violence. Early 
detection of firearms and other weapons can prevent violence from happening and save 
hundreds of lives. 

OBJECT DETECTION 

The YOLO (You Only Look Once) model is used in this project to detect weapons. 
YOLO is a popular object detection [6] model known for its speed and accuracy. It was 
first introduced by Joseph Redmon in 2016 [7]. The foundation of YOLO is a neural 
network [8] that falls under deep learning [9], a subset of machine learning. A key step 
in developing a machine learning solution is training. Typically, pre-trained models are 
available as open source that are trained to detect common objects, such as people, 
cars, etc., for quickly deploying a machine-learning solution. However, no pre-trained 
model was found freely available to satisfy the requirements of this project after a 
comprehensive search over the internet. Therefore, this project's first step was to train 
the YOLO model to detect weapons. I used a dataset containing various types of guns 
and knives to train the model to detect weapons for demonstration. 

DEVELOPMENT ENVIRONMENT AND THE PLATFORM 

I chose Python as the programming language and used Visual Studio Code for 
development. As one of the most popular programming languages, Python offers 
several benefits, including [10]: 

1.  Python runs on major platforms like Windows, macOS, Linux, Raspbian, 
and more. 

2.  It provides extensive library support for data analysis and machine 
learning, including libraries such as NumPy, OpenCV, PyTorch, and others. 



3.  Python is ideal for rapidly validating a proof of concept or building a 
prototype. 

Visual Studio Code offers a user-friendly interface for editing, debugging, and running 
the developed code [11]. In this work, I created and demonstrated I prototype on two 
different platforms: 

1.  A Windows-based workstation: This setup demonstrates the suitability of I 
system for a central monitoring station, where it can be connected to multiple IP 
security cameras to detect weapons. 

2.  An integrated Raspberry Pi-based [12] camera system: Equipped with 
weapon detection analytics, this edge device provides a cost-effective solution 
that does not require a central monitoring station for operation. 

  

TRAINING: Supervised learning [13] is the learning approach suitable for this project. It 
is akin to classroom teaching, where the teacher shows labelled examples—such as 
apples and bananas—and the students learn to recognize these objects when they 
encounter them later. Other types of learning include unsupervised learning [14] and 
reinforcement learning [15]. 

In my approach, I used images of knives and guns, labelling them as weapons. Instead 
of capturing or collecting my own dataset, which is time-consuming and 
labour-intensive, I leveraged open-source images. These datasets are freely available 
on the internet from several platforms, including Kaggle [16], Roboflow [17], and various 
GitHub repositories. After careful consideration, I chose a dataset from Kaggle to train 
my YOLOv8 model. The comprehensive dataset contains 8,149 annotated images of 
knives and various types of guns [18]. 

  



  



 

Figure 2: Some labelled data of guns and knives 

  

YOLOv8 MODELS 
While YOLOv8 is compatible with multiple frameworks, it is primarily supported by the 
Ultralytics library [19], which simplifies implementation. Therefore, this work has used 
the Ultralytics Python library for model training and development. 

YOLOv8 offers five model profiles, ranging from the lightweight 'Nano' (YOLOv8n) to the 
high-capacity 'Extra Large' (YOLOv8x) profile [20]. The choice of a suitable profile 
depends on the application requirements, available resources, and computational 
power. The key tradeoff among these profiles is accuracy versus speed—smaller 
models provide faster inference but lower accuracy. In contrast, larger models offer 
higher accuracy at the cost of slower inference speed and increased computational 
demands. 

Given this tradeoff, I selected the 'Large' profile (YOLOv8l) for the Windows-based 
workstation application, as these systems typically have sufficient computational power 
to handle it. However, due to the minimal computational resources of the Raspberry Pi, I 
used the 'Nano' profile (YOLOv8n) for developing the integrated weapon detection 
system. 

The pre-trained Nano [21] and Large [22] models do not include knife or gun detection 
by default. Therefore, I trained the models using a labelled dataset downloaded from 
Kaggle [18]. The figure below shows the code snippet used for training. 

  



  

 

Figure 3: Python script for training YOLOv8m model with weapon detector dataset 

  

The Ultralytics train() function for model training accepts several parameters. One key 
parameter is 'data,' which specifies the path to the configuration file (data.yml). This 
configuration file contains the locations of the training and validation images, the 
number of classes in the dataset and their names. 

In my case, I have a single class called "weapon." However, this class encompasses a 
variety of objects, such as knives, guns, and rifles. 

The "epochs" parameter defines the number of training iterations. I set this value to 100. 

Figure 4 shows a code snippet from the developed application. The trained model is 
loaded to run predictions on images captured by the webcam. 

  



  

 

Figure 4: A code snippet from the developed application 

  

A snapshot of the developed application is shown in Figure 5. The application interface 
is designed using the Qt library for Python. Currently, the application supports only a 
single camera, but the concept can be easily scaled to accommodate multiple cameras. 
The interface includes a live view, a snapshot view of alarms, an alarm list, and an input 
configuration window where users can enter an email address and phone number to 
receive real-time notifications when a weapon is detected via email or SMS. 

  



  

 

Figure 5: Weapon detection application interface 

  

Figure 6 shows samples of email and SMS notifications. I used Twilio for these 
notifications, a platform that allows developers to create applications to support 
messaging over various media, such as email and SMS. 

  

 



Figure 6: Real-time weapon detection notification via Email and SMS 

  

The developed program can also run on an edge device, such as a Raspberry Pi with 
an integrated camera, for standalone applications. Due to the limited computational 
power of the Raspberry Pi, I used the YOLOv8 'nano' model to train on the weapon 
dataset. Figure 7 show the Raspberry Pi 4 hardware board with a camera. This 
hardware can be enclosed in a box to create a cost-effective integrated camera device, 
which can function as a standalone edge device for real-time weapon detection. 

  

  

 

Figures 7: Raspberry PI camera prototype with integrated weapon detection analytics 

The software on Raspberry PI does not use a Graphical User Interface (GUI) to run as it 
is an edge device and will never be connected to a monitor for practical application. This 
approach will also help saving some CPU load so that the machine learning analytic's 
performance on this limited power device is not affected. The cost breakdown for the 
Raspberry Pi-based smart weapon detection camera is provided below: 



  

 

Table 1: Approximate cost breakdown for a Raspberry 4 PI based integrated camera for 
weapon detection 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Feb 3, 2025 -  
Feb 4, 2025 

Completed the Analysis, Conclusion, Citations and 
Acknowledgement sections. Worked on formatting the poster 
materials for printing.  

PERFORMANCE ANALYSIS 
PERFORMANCE ANALYSIS 

 
  

PERFORMANCE ANALYSIS 

Training for both "Large" and "Nano" YOLOv8 models was executed for 100 epochs 
with a batch size of 8. The figures below show the performance results achieved with 
both models 

  

 

Figure 8: YOLOv8 Lange model training results from over 100 epochs using the weapon 
dataset 



  

 

Figure 9: YOLOv8 Nano model training results from over 100 epochs using the weapon 
dataset 

The figures illustrate different types of losses: "box" loss (which measures how well the 
predicted bounding box overlaps with the labelled data), classification loss "cls" (which 
indicates how accurately the model predicts the labelled classes), and distribution focal 
loss "dfl" (which represents how well the algorithm predicts the presence of an object) 
[23]. As the training process progresses through multiple epochs, the decreasing trend 
of these losses signifies the model's improving ability to detect weapons. Additionally, 
the increase in precision, recall, and mean average precision (mAP) further indicates 
the model's enhanced performance over time. 

Precision measures how accurately the model identifies weapons [24]. In an ideal 
scenario, if the model correctly classifies every detected weapon without any false 
positives, its precision would be 100%. However, if the model frequently misclassifies 
non-weapons as weapons (false positives), its precision decreases. 

On the other hand, recall measures how well the model recognizes a weapon when it 
appears in front of the camera [24]. If the model detects every weapon instance without 
missing any (false negatives), its recall would be 100%. 

In practice, achieving 100% precision and recall is nearly impossible. There is usually a 
tradeoff between the two—improving precision often comes at the cost of recall, and 



vice versa. After training for 100 epochs, the best models we adopted in our prediction 
application achieved the following precision and recall values: 

  

 

Table 2: Precison and recall values of the trained YOLOv8l and YOLOv8n models 

  

Figure 10 shows the models' validation performance for a batch of images: 



  

 

Figure 10: Model validation performance for a batch of labelled data 

  

As the figure shows, both models perform well in detecting weapons. However, the 
nano model's confidence score, which reflects the model's certainty in its predictions, is 
slightly lower. Consequently, the nano model is more likely to miss weapons when they 
appear in front of the camera. This behaviour is expected and is discussed in the 
Method section. 



CONCLUSION 

 

In this project, I have demonstrated a practical application of machine learning to detect 
weapons in real time, helping to prevent violence before it occurs. Violence involving 
various types of weapons, such as knives, guns, and rifles, has increased significantly 
at an alarming rate over the past couple of decades worldwide. 

To address this issue, I propose two weapon detection systems: 

1. A central monitoring station-based application capable of analyzing streaming video 
from commercial IP cameras 

2. A cost-effective, standalone edge camera device with built-in weapon detection 
analytics. The monitoring station application is demonstrated with a single camera feed 
but is easily scalable to support multiple cameras. Additionally, the developed system 
can notify users or authorities of any detected weapon activity in real-time via email or 
SMS, enabling immediate response and intervention. 
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