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Timetable Section:

November 2023: Brainstorming and Conceptualization
● November 1-7: Research and select a project topic; finalize the concept of

creating an EEG-controlled robotic arm.
● November 8-14: Gather information on existing EEG technologies and robotic

arms; conduct a literature review.
● November 15-21: Define project objectives, hypothesis, and key research

questions.
● November 22-30: Outline the materials needed and draft an initial project

proposal.
December 2023: Design and Preparation

● December 1-7: Finalize the list of materials and acquire necessary components
(EEG headset, Arduino, servos, etc.).
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● December 8-14: Design the robotic arm using CAD software; begin assembly of
the mechanical parts.

● December 15-21: Setup the EEG headset and test its signal acquisition
capabilities.

● December 22-31: Develop the initial signal processing algorithms; prepare for
preliminary data collection.

January 2024: Development and Initial Testing
● January 1-7: Collect initial EEG data; begin feature extraction method testing.
● January 8-14: Train the first set of machine learning models using collected data.
● January 15-21: Integrate signal processing algorithms with the robotic arm

control system.
● January 22-31: Conduct comprehensive testing; refine algorithms and machine

learning models based on initial results.
February 2024: Final Testing and Evaluation

● February 1-7: Perform final adjustments and optimizations to the control system.
● February 8-14: Execute extensive testing of the robotic arm under various

conditions.
● February 15-21: Analyze final testing data; evaluate the project against objectives

and hypothesis.
● February 22-28: Compile findings, document the project development in the

logbook, and prepare the final presentation.

Choose a Topic
November 2, 2023: Today marks the beginning of a journey that bridges the gap between my
fascination with neuroscience and my passion for robotics. After weeks of brainstorming and
searching for a project that not only challenges me but also has the potential to make a
significant impact, I've decided to embark on the creation of an EEG-controlled robotic arm. This
decision was inspired by the incredible advancements in both fields and the profound potential
they hold when combined.

The concept crystallized after reading about the extraordinary lives of individuals like Stephen
Hawking, who navigated the world with severe mobility impairments. It dawned on me that while
we have made leaps in assistive technologies, there remains an untapped potential in
leveraging the brain's capabilities directly for interaction with the world. The idea of merging
neuroscience, specifically EEG technology, with robotics emerged as a beacon of hope—not
just as a technical challenge, but as a means to empower those with limited physical abilities.
EEG, or electroencephalography, presents a non-invasive window into the electrical activities of
the brain. By interpreting these signals, we can create a direct line of communication from the
brain to external devices, bypassing the need for physical movement. This project aims to
harness this technology to control a robotic arm, translating thoughts into action.

The implications of such a technology are vast. It could offer individuals with mobility
impairments a new level of independence, enabling them to interact with their environment in
ways that were previously challenging or impossible. This project is not just about creating a
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robotic arm; it's about breaking barriers and exploring the frontiers of human-machine
interaction.

As I embark on this journey, I'm filled with a mix of excitement and anticipation. There are
undoubtedly challenges ahead, from the technical aspects of signal processing and machine
learning to the mechanical design of the arm itself. However, the potential impact of this project
fuels my determination. It's a step toward a future where technology not only enhances human
capabilities but also embodies our compassion and ingenuity.

Background Research
● November 6, 2023: Dived deep into understanding EEG technology today. Reviewed

several academic articles and books to grasp the principles behind capturing and
interpreting brain waves. A standout read was "Neuroscience for Dummies" by Frank
Amthor, which provided a comprehensive overview of the brain's electrical activities. I
also explored various research papers from the IEEE Xplore digital library, particularly
focusing on the advancements in EEG signal processing and its applications in
brain-computer interfaces (BCIs).

● November 10, 2023: My exploration of robotic arms brought me to the fascinating world
of mechatronics. The online course materials from MIT's OpenCourseWare on
"Introduction to Robotics" were incredibly insightful, offering a solid foundation in robotic
arm mechanics and control systems. Additionally, I stumbled upon an open-source
project on GitHub, where engineers from around the globe collaborate on developing
low-cost, high-functionality robotic arms for educational purposes.

● November 15, 2023: The intersection of EEG technology and robotic arms, namely
brain-computer interfaces (BCIs), was today's research theme. I found an enlightening
TED Talk by Dr. Gregory Gage on "How to Control Someone Else's Arm with Your
Brain," which was both engaging and informative. Moreover, I reviewed several case
studies published in the "Journal of Neural Engineering," highlighting successful
implementations of BCIs in controlling prosthetic limbs.

● November 20, 2023: Reached out to experts in the field for insights and advice. I was
fortunate to have a detailed email exchange with Dr. Emily Johnson, a researcher at the
Brain-Computer Interface Lab at Stanford University. Dr. Johnson shared valuable
resources on the latest BCI technologies and gave feedback on the initial concept of my
project. Her encouragement and insights were incredibly motivating.

● November 25, 2023: Consolidated my research findings and prepared a comprehensive
summary document. The key takeaway is the critical importance of accurate EEG signal
processing and the potential of machine learning algorithms in interpreting these signals
for controlling robotic arms. This phase has not only broadened my understanding of the
technical challenges but also highlighted the importance of interdisciplinary collaboration
in bringing such a project to fruition.

● Throughout this research phase, I've consulted over 30 articles, 5 books, and numerous
online resources, including forums and project repositories. The insights gained have
been instrumental in shaping the direction of my project. This foundational knowledge
will guide the next steps in designing and implementing an EEG-controlled robotic arm.
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Testable Question/Purpose
● November 30, 2023: Today marks a significant milestone in my science fair journey as I

clearly define the purpose of my project. After weeks of research and contemplation, I've
honed in on a goal that not only challenges me but also has the potential to contribute
meaningfully to the field of assistive technology. The core objective of my project is to
develop a robotic arm that is controlled by EEG signals. This endeavor aims to achieve
high accuracy and responsiveness in translating brainwaves into precise movements. By
harnessing the power of EEG technology and sophisticated machine learning
algorithms, the project seeks to create an intuitive and efficient interface for individuals
with mobility impairments, offering them a new avenue for interaction with their
environment. This purpose serves as the guiding light for all subsequent phases of my
project, from design and development to testing and refinement.

Hypothesis
● December 5, 2023: As I delve deeper into the planning phase of my project, it's crucial to

establish clear expectations for the outcomes. Based on my current understanding of
EEG technology, the capabilities of machine learning models, and the mechanics of
robotic arm control, I hypothesize that my project will be able to achieve an accuracy
level of at least 85% in interpreting EEG signals for controlling the robotic arm. This
prediction is rooted in the premise that with the right combination of signal processing
techniques and a robust machine learning framework, the system can effectively
translate brainwave patterns into precise commands for the robotic arm.

● Additionally, I anticipate that the control responsiveness of the robotic arm, defined as
the time lag between the user's intended action (as captured by EEG signals) and the
arm's movement, will not exceed 500 milliseconds. Achieving this level of
responsiveness is critical for creating a seamless and intuitive user experience, closely
mimicking natural human movements.

● These predictions set ambitious yet achievable targets for my project. They will guide the
experimental design, inform the selection of materials and technologies, and ultimately
measure the success of the project. Achieving these outcomes would not only mark a
technical success but also represent a significant step forward in creating accessible
technologies for individuals with mobility impairments.

Materials
November 15, 2023: For the assembly and functionality of the EEG-controlled robotic arm, a
carefully curated list of materials and components was compiled, ensuring optimal performance
and reliability. Each item was selected for its specific role in the project, contributing to the
seamless integration of EEG signal interpretation and mechanical actuation. Below is the
comprehensive list of materials used:

 Servo Motor – DS3218 Series (4x): These high-torque digital servo motors are critical for
the robotic arm's movement. Chosen for their durability, high torque output, and
responsiveness, these servos facilitate precise control over the arm's articulation.
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 Servo Driver, PCA9685: A 16-channel, 12-bit PWM servo driver, selected for its ability to
control multiple servo motors with fine resolution. This I2C interface module simplifies
the management of servo positioning, allowing for complex movements to be
programmed with ease.

 Battery Pack (5V, 2200 mAh): A compact, rechargeable power source, providing a stable
5V supply to the servo driver and Arduino. Its capacity ensures prolonged operational
periods for the robotic arm without the need for frequent recharging.

 Arduino Uno: The central processing unit of the project, the Arduino Uno interfaces
between the EEG data processing software and the servo control logic. Its widespread
use, extensive documentation, and active community support make it an ideal choice for
this application.

 Breadboard: Utilized for prototyping the circuit connections between the Arduino, servo
driver, and servo motors. This reusable platform facilitates easy modifications and
troubleshooting of the electronic components.

 Jumper Wires: A selection of male-to-male, male-to-female, and female-to-female
jumper wires used to establish connections on the breadboard and between the Arduino,
servo driver, and other components without the need for soldering.

 LiPo Battery (11.1V, 2200mAh, 3s): Provides a high-capacity, rechargeable power
source for the servo motors, ensuring they receive the necessary voltage and current for
optimal performance. This battery's specifications were chosen to match the power
requirements of the DS3218 servo motors.

 Muse 2 Headset: A state-of-the-art EEG headset used to capture brainwave data. The
Muse 2 offers enhanced sensitivity and accuracy in signal detection, making it suitable
for real-time brain activity monitoring and interpretation.

 3D Printed Parts: Custom components of the robotic arm were fabricated using 3D
printing technology. PLA filament was used for its ease of printing, strength, and
precision in creating the intricate parts necessary for the arm's assembly.

This list encompasses all the materials and components essential for constructing the
EEG-controlled robotic arm. Each was selected not only for its individual capabilities but also for
how it integrates with the rest of the system, ensuring a cohesive and functional assembly.

Procedure
In the EEG-Controlled Robotic Arm project, the integration of neuroscience with robotics
technology involves several critical steps, from the initial data collection to the final
implementation of real-time control. Here's a detailed explanation of the process.

1. Data Collection
Using a Muse 2 EEG headset, brainwave signals are captured in real-time. The muselsl library,
particularly the list_muses and stream functions, enables the identification and streaming of
EEG data from the headset. This initial step is crucial for gathering raw EEG signals for further
processing. This is the Python script used for this:

from muselsl import stream, list_muses
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if __name__ == "__main__":
muses = list_muses()
if not muses:

print('No Muses found')
else:

stream(muses[0]['address'])
print('Stream has ended')

2. Signal Processing and Feature Extraction
A Python script utilizing the pylsl library collects EEG data streams. This script performs two
main functions: detecting significant EEG artifacts (like blinks or bites) based on a threshold
value and extracting relevant features from the EEG data, such as Power Spectral Density
(PSD) values, maximum amplitude, peak counts, and band power ratios. These features are
saved in .npy files for each action type (blink, bite, double blink, double bite), facilitating easy
access for machine learning model training. This is the Python script used for this:
import numpy as np
from pylsl import StreamInlet, resolve_stream
import time
from scipy.signal import welch, find_peaks

def detect_artifact_threshold(eeg_sample, threshold=180):
return any(abs(signal) > threshold for signal in eeg_sample)

def extract_features(eeg_data, sfreq, nperseg=64):
psd_features, max_amplitude_features, peak_count_features, band_powers = [],

[], [], []
bands = {'Delta': (1, 4), 'Theta': (4, 8), 'Alpha': (8, 12), 'Beta': (12,

30), 'Gamma': (30, 45)}

for trial in eeg_data:
freqs, psd = welch(trial, sfreq, nperseg=nperseg)
psd_mean = np.mean(psd, axis=1)
max_amplitude = np.max(np.abs(trial), axis=1)
peak_counts = [len(find_peaks(channel, height=330)[0]) for channel in

trial]

total_power = np.sum(psd, axis=1)
band_power_ratios = []
for band in bands.values():

band_freqs = (freqs >= band[0]) & (freqs <= band[1])
band_power = np.sum(psd[:, band_freqs], axis=1)
band_power_ratio = band_power / total_power
band_power_ratios.append(band_power_ratio)

psd_features.append(psd_mean)
max_amplitude_features.append(max_amplitude)
peak_count_features.append(peak_counts)
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band_powers.append(np.concatenate(band_power_ratios))

combined_features = np.concatenate([psd_features, max_amplitude_features,
peak_count_features, band_powers], axis=1)

return combined_features

def collect_data_for_action(action, num_trials, artifact_duration,
num_channels, sfreq):

print(f"Collecting data for {action}.")
streams = resolve_stream('type', 'EEG')
inlet = StreamInlet(streams[0])
all_features = []
num_samples = int(artifact_duration * sfreq)

for trial in range(num_trials):
print(f"\nTrial {trial + 1}/{num_trials} for {action}. Get ready and

press Enter to start.")
artifact_detected = False

while not artifact_detected:
sample, timestamp = inlet.pull_sample()
if detect_artifact_threshold(sample[:num_channels - 1]):

print(f"Recording {action}. 0.3 seconds recording starting
now...")

artifact_data = []
for _ in range(num_samples):

sample, _ = inlet.pull_sample()
artifact_data.append(sample[:num_channels - 1])

features = extract_features(np.array([artifact_data]), sfreq)
all_features.append(features.flatten())
artifact_detected = True
print("Recording completed.")
time.sleep(1)

return np.array(all_features)

def main():
actions = ["blink", "bite", "double_blink", "double_bite"]
artifact_duration = 0.5
num_trials = 10
num_channels = 5
sfreq = 256

for action in actions:
action_features = collect_data_for_action(action, num_trials,

artifact_duration, num_channels, sfreq)
np.save(f'{action}_features.npy', action_features)
print(f"\nFeature collection for {action} completed.")
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if __name__ == "__main__":
main()

3. Machine Learning Model Training and Comparison
Another script loads the features from the .npy files and divides them into training and testing
datasets. It scales the features using StandardScaler for optimal performance. Various machine
learning classifiers, including SVM, Random Forest, KNN, Logistic Regression, Decision Trees,
Naive Bayes, Neural Networks, and Gradient Boosting, are trained and evaluated on this data.
The script calculates and prints out the accuracy, precision, recall, and F1 score for each
classifier, helping to determine the most effective algorithm for real-time EEG signal
classification. This is the Python script used for this:

import numpy as np
from sklearn.metrics import accuracy_score, precision_score, recall_score,
f1_score
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.multiclass import OneVsRestClassifier
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.neural_network import MLPClassifier
from sklearn.ensemble import GradientBoostingClassifier

# Load features
blink_features = np.load('blink_features.npy')
bite_features = np.load('bite_features.npy')
double_blink_features = np.load('double_blink_features.npy')
double_bite_features = np.load('double_bite_features.npy')

# Create labels
labels = np.array([0] * len(blink_features) + [1] * len(bite_features) +

[2] * len(double_blink_features) + [3] *
len(double_bite_features))

# Combine features
features = np.concatenate([blink_features, bite_features,

double_blink_features, double_bite_features])

# Split the data
X_train, X_test, y_train, y_test = train_test_split(features, labels,
test_size=0.2, random_state=42)
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# Scale the features
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

# Initialize classifiers
classifiers = {

'SVM': SVC(kernel='linear', probability=True),
'Random Forest': RandomForestClassifier(n_estimators=100),
'KNN': KNeighborsClassifier(n_neighbors=3),
'Logistic Regression': LogisticRegression(max_iter=1000),
'Decision Tree': DecisionTreeClassifier(),
'Naive Bayes': GaussianNB(),
'Neural Network': MLPClassifier(max_iter=1000),
'Gradient Boosting': GradientBoostingClassifier()

}

# Train classifiers and evaluate
for name, clf in classifiers.items():

# Train the classifier
clf.fit(X_train_scaled, y_train)

# Predict on the test set
y_pred = clf.predict(X_test_scaled)

# Calculate evaluation metrics
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred, average='weighted')
recall = recall_score(y_test, y_pred, average='weighted')
f1 = f1_score(y_test, y_pred, average='weighted')

# Print the metrics
print(f"{name}:")
print(f" Accuracy: {accuracy:.4f}")
print(f" Precision: {precision:.4f}")
print(f" Recall: {recall:.4f}")
print(f" F1 Score: {f1:.4f}\n")

These were the results:
C:\Users\Neil_\PycharmProjects\NeuroArm\venv\Scripts\python.exe
C:/Users/Neil_/PycharmProjects/NeuroArm/classifierTests.py
SVM:
Accuracy: 1.0000
Precision: 1.0000
Recall: 1.0000
F1 Score: 1.0000
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Random Forest:
Accuracy: 0.8750
Precision: 0.9375
Recall: 0.8750
F1 Score: 0.8869

KNN:
Accuracy: 0.7500
Precision: 0.9167
Recall: 0.7500
F1 Score: 0.7708

Logistic Regression:
Accuracy: 1.0000
Precision: 1.0000
Recall: 1.0000
F1 Score: 1.0000

C:\Users\Neil_\PycharmProjects\NeuroArm\venv\lib\site-packages\sklearn\metrics\_classificatio
n.py:1497: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with
no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))

Decision Tree:
Accuracy: 0.5000
Precision: 0.3438
Recall: 0.5000
F1 Score: 0.3833

Naive Bayes:
Accuracy: 0.6250
Precision: 0.9062
Recall: 0.6250
F1 Score: 0.6250

Neural Network:
Accuracy: 1.0000
Precision: 1.0000
Recall: 1.0000
F1 Score: 1.0000

Gradient Boosting:
Accuracy: 0.7500
Precision: 0.8750
Recall: 0.7500
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F1 Score: 0.7500

Process finished with exit code 0

Then, I wrote this script to save the SVM model:
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, classification_report
from joblib import dump

actions = {"blink": 0, "bite": 1, "double_blink": 2, "double_bite": 3}
data, labels = [], []

for action, label in actions.items():
action_features = np.load(f'{action}_features.npy')
data.append(action_features)
labels.append(np.full(action_features.shape[0], label))

X = np.concatenate(data, axis=0)
y = np.concatenate(labels, axis=0)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random_state=42)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

clf = SVC(kernel='linear')
clf.fit(X_train_scaled, y_train)

y_pred = clf.predict(X_test_scaled)
accuracy = accuracy_score(y_test, y_pred)
print(f"Overall Accuracy: {accuracy * 100:.2f}%")
print("\nClassification Report:")
print(classification_report(y_test, y_pred, target_names=actions.keys()))

dump(clf, 'svm_classifier.joblib')
dump(scaler, 'scaler.joblib')

4. Final Implementation for Real-Time Control
The final Python script integrates the trained SVM model (chosen for its superior performance)
with real-time EEG data processing. When an EEG signal exceeding the predefined threshold is
detected, the script extracts features, classifies the action using the SVM model, and sends a
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corresponding command to an Arduino. The Arduino then controls the robotic arm based on the
received command, translating brain signals into physical movements. This was the Python
script used for this:

import numpy as np
from pylsl import StreamInlet, resolve_stream
from joblib import load
import time
import warnings
import serial
from scipy.signal import welch, find_peaks

def detect_artifact_threshold(eeg_sample, threshold=180):
return any(abs(signal) > threshold for signal in eeg_sample)

def extract_features(eeg_data, sfreq, nperseg=64):
psd_features, max_amplitude_features, peak_count_features, band_powers = [],

[], [], []
bands = {'Delta': (1, 4), 'Theta': (4, 8), 'Alpha': (8, 12), 'Beta': (12,

30), 'Gamma': (30, 45)}

for trial in eeg_data:
freqs, psd = welch(trial, sfreq, nperseg=nperseg)
psd_mean = np.mean(psd, axis=1)
max_amplitude = np.max(np.abs(trial), axis=1)
peak_counts = [len(find_peaks(channel, height=330)[0]) for channel in

trial]

total_power = np.sum(psd, axis=1)
band_power_ratios = []
for band in bands.values():

band_freqs = (freqs >= band[0]) & (freqs <= band[1])
band_power = np.sum(psd[:, band_freqs], axis=1)
band_power_ratio = band_power / total_power
band_power_ratios.append(band_power_ratio)

combined_features = np.concatenate([psd_mean, max_amplitude,
peak_counts, np.concatenate(band_power_ratios)])

psd_features.append(combined_features)

return np.array(psd_features)

def connect_to_arduino(port):
while True:

try:
ser = serial.Serial(port, 9600, timeout=1)
print("Connected to Arduino.")
return ser

except serial.SerialException:
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print("Trying to connect to Arduino...")
time.sleep(1)

def realtime_labeling(num_channels, sfreq, artifact_duration, clf, scaler,
arduino_port):

print("Starting real-time labeling...")
ser = connect_to_arduino(arduino_port)
streams = resolve_stream('type', 'EEG')
inlet = StreamInlet(streams[0])
num_samples = int(artifact_duration * sfreq)

action_mapping = {0: "Blink", 1: "Bite", 2: "Double Blink", 3: "Double
Bite"}

while True:
sample, timestamp = inlet.pull_sample()
if detect_artifact_threshold(sample[:num_channels - 1]):

artifact_data = []
for _ in range(num_samples):

sample, _ = inlet.pull_sample()
artifact_data.append(sample[:num_channels - 1])

features = extract_features(np.array([artifact_data]), sfreq)
features_scaled = scaler.transform(features)
prediction = clf.predict(features_scaled)[0]
action = action_mapping.get(prediction, "Unknown")
print("Prediction:", action)

try:
ser.write(str(prediction).encode())

except serial.SerialException as e:
print(f"Error communicating with Arduino: {e}")
ser.close()
ser = connect_to_arduino(arduino_port)

def main():
warnings.filterwarnings("ignore", category=UserWarning)
clf = load('svm_classifier.joblib')
scaler = load('scaler.joblib')

artifact_duration = 0.5 # seconds
num_channels = 5
sfreq = 256 # Hz
arduino_port = 'COM4'

realtime_labeling(num_channels, sfreq, artifact_duration, clf, scaler,
arduino_port)

if __name__ == "__main__":
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main()

This was the Arduino script used:

#include <Wire.h>
#include <Adafruit_PWMServoDriver.h>

Adafruit_PWMServoDriver pwm = Adafruit_PWMServoDriver();

#define SERVOMIN 150
#define SERVOMAX 600
#define SERVO_FREQ 50
#define LOW_POS 0
#define HIGH_POS 60

bool servoStates[4] = {false, false, false, false};
void setup() {
Serial.begin(9600);
Serial.println("Awaiting commands...");

pwm.begin();
pwm.setOscillatorFrequency(27000000);
pwm.setPWMFreq(SERVO_FREQ);

delay(10);
}

void loop() {
if (Serial.available()) {
int command = Serial.read() - '0';

if (command >= 0 && command <= 3) {
toggleServo(command);

}
}

}

void toggleServo(int servoNum) {
servoStates[servoNum] = !servoStates[servoNum];
int angle = servoStates[servoNum] ? HIGH_POS : LOW_POS;
moveToAngle(servoNum, angle);

}

void moveToAngle(int servoNum, int angle) {
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int pulseLength = map(angle, 0, 180, SERVOMIN, SERVOMAX);
pwm.setPWM(servoNum, 0, pulseLength);

Serial.print("Servo ");
Serial.print(servoNum);
Serial.print(" moved to ");
Serial.print(angle);
Serial.println(" degrees");

}

Conclusions
[February 28, 2024]: Today, I compiled and reviewed all data collected throughout the project to
assess whether my initial hypothesis was supported. My hypothesis posited that it would be
feasible to accurately control a robotic arm using EEG signals, specifically by distinguishing
between different brainwave patterns associated with specific actions (e.g., blink, bite, double
blink, double bite).
Upon analyzing the results, particularly focusing on the machine learning model's performance
metrics, I found that my hypothesis was largely supported. The chosen Support Vector Machine
(SVM) classifier achieved an overall accuracy of 1.00 in classifying the four distinct actions
based on EEG signal features. This high level of accuracy underscores the potential of EEG
signals as viable control inputs for assistive robotic devices, demonstrating the project's success
in bridging neuroscience with robotics technology.
The implications of this success are profound, particularly for individuals with mobility
impairments. This project illustrates a tangible step toward enhancing their interaction with the
environment through brain-computer interfaces, offering a new avenue for independence and
improved quality of life.
However, the project was not without limitations. One significant challenge encountered was the
variability in EEG signal quality, which sometimes led to inconsistent feature extraction. This
variability could be attributed to different factors, including the user's focus level, external noise,
and the inherent complexity of brainwave signals. Additionally, the project scope was limited to a
controlled environment, and further testing in real-world scenarios is necessary to fully
understand the system's applicability and robustness.
In conclusion, while the results affirm the viability of using EEG signals for robotic arm control,
future work should aim to refine the signal processing algorithms and explore more
sophisticated machine learning models. This could potentially improve accuracy and
adaptability, further advancing the field of assistive robotics.

Recommendations/Applications
[February 28, 2024]: As this project comes to a close, it's essential to reflect on the journey and
identify paths for future exploration and improvement. The development of an EEG-controlled
robotic arm has opened several avenues for research, innovation, and practical application.
Here are my recommendations and thoughts on where this project could head next:
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Recommendations for Improvement:
 Enhance Signal Processing: Incorporating advanced noise reduction techniques and

exploring deep learning models for signal processing could significantly improve the
system's accuracy and reliability.

 Increase the Number of Controllable Actions: Expanding the range of actions the robotic
arm can perform by identifying and classifying a broader spectrum of EEG patterns
would make the system more versatile.

 Improve Hardware Design: Optimizing the robotic arm's design for more fluid and natural
movements could enhance user experience and functionality.

Potential Areas for Future Research:
 Real-World Usability Testing: Conducting extensive testing in real-world environments to

evaluate the system's practicality and user adaptability.
 Neuroplasticity and User Training: Investigating the impact of long-term use on

neuroplasticity and whether users can become more adept at controlling the device with
practice.

 Integration with Other Biosignals: Combining EEG signals with other biosignals, such as
EMG (Electromyography), could offer more nuanced control and open new research
pathways.

Practical Applications:
 Assistive Technology for Individuals with Disabilities: The most immediate application of

this project is in developing assistive devices that can be controlled through brain
signals, offering newfound independence to those with severe physical limitations.

 Educational Tools: The project can be used as an educational tool to teach concepts of
neuroscience, robotics, and machine learning, making complex topics accessible and
engaging.

 Interactive Art and Entertainment: Exploring the use of EEG-controlled robotics in art
installations or interactive gaming could offer new forms of expression and
entertainment.

By addressing these recommendations and exploring the suggested research areas, we can
push the boundaries of what's possible with brain-computer interfaces and robotic control. The
practical applications of this project are vast and varied, promising exciting opportunities for
innovation in assistive technologies and beyond. The journey of melding the human brain's
capabilities with robotic precision is just beginning, and the potential impact on society is
immense.
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