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Abstract: Non-small cell lung cancer (NSCLC) presents a formidable challenge in oncology due to its
high incidence rates and poor prognosis. Conventional therapeutic approaches, such as chemotherapy and
targeted therapy, are frequently impeded by the emergence of drug resistance, exacerbating treatment
complexities. Current chemoresistance detection is often delayed, resulting in patients often missing vital
therapeutic options, allowing cancer to progress and metastasize, thereby worsening prognostic outcomes.
In response, this study introduces a novel Python-based diagnostic model designed to analyze gene-drug
interactions rapidly, thereby facilitating personalized therapy in NSCLC patients. Leveraging the
BioPython library, the model enables precise identification of chemoresistance markers associated with
the key genes EGFR, ALK, MET, NTRK1, KRAS, and TP53. By addressing the pressing need for
personalized treatment strategies, this approach holds promise for improving NSCLC management and
patient survival.
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Introduction:

Lung cancer stands as one of the most pervasive oncological challenges globally, with over 2 million
individuals receiving diagnoses in 2020 alone. Among its forms, non-small cell lung cancer (NSCLC)
emerges as the predominant subtype, constituting approximately 80-85% of all lung cancer cases in the
United States. This year, an estimated 240,000 Americans will be diagnosed with lung cancer, with
NSCLC accounting for 188,000 of these cases!!). Moreover, the prognostics of this disease are poor, with
less than 50% of patients surviving beyond the first year, and only 18% surviving beyond the next 5 years,
compelling researchers to push the frontiers of current therapeutic models to enhance patient outcomes
and longevity.

The majority of NSCLC patients undergo an intensive and invasive treatment regimen, comprising of
radiotherapy, chemotherapy, targeted therapy, immunotherapy, or a combination of these. Among these,
however, conventional chemotherapies and targeted therapies hold prominence due to their established
efficacy, particularly in advanced-stage disease and cases of relapse. Chemotherapy has long been a
cornerstone of NSCLC treatment, exerting cytotoxic effects by disrupting DNA replication and cell
division. In recent years, targeted therapies have emerged as a significant advancement in NSCLC
management, offering more tailored and precise treatment options. Among these, tyrosine kinase
inhibitors (TKIs) have garnered significant attention for their ability to target specific molecular
alterations; by inhibiting signalling pathways, these agents effectively suppress tumour growth in subsets
of NSCLC with certain mutations.

In the ever-evolving landscape of oncology, new advancements in the treatments of NSCLC seem
promising in decreasing mortality rates. One leading concern, however, is the emergence of drug-resistant
agents, which pose significant obstacles to managing patients with NSCLC. Drug resistance primarily
develops during the course of treatment, as cancer cells adapt and evolve in response to drugs. These
mutations enable tumours to develop mechanisms that promote resistance, gradually reducing the
effectiveness of the therapeutic regimen over time, and necessitating adjustments to treatment strategies to



increase overall survival. It is critical to recognize that drug resistance often becomes apparent over a long
period, notably shown through diminished response or even tumour progression. However, by the time
these symptoms are noticed, valuable treatment opportunities may have been missed, leading to a
compromised prognosis and diminished chances of successful intervention. Thus, a prerequisite to
tackling drug insensitivity involves the timely detection of specific gene mutations, underscoring the
importance of developing rapid and cost-effective diagnostic tools. There exists current research mapping
genetic mutations that confer drug resistance, coupled with tools capable of suppressing the expression of
these genes. However, bridging the gap between mutation detection and targeted gene suppression
necessitates the development of effective methods for scanning patient’s genomes to identify and flag
relevant mutations. As such, this paper aims to address this gap by offering a novel Python-based support
system designed to analyze tumour genomes to predict drug resistance in patients with NSCLC.

Research Method:

Inclusion/Exclusion Criteria:

Scanning patients’ genomes is an intense task that entails an abundance of details. When conducting an
extensive gene search of this type, the characteristics of variants differ greatly, particularly concerning
their roles in cancer progression and treatment resistance. Thus, this project has implemented inclusion
and exclusion criteria during the data search phase to ensure the selection of relevant and scientifically
validated variants. The selection criteria prioritize variants that have been extensively investigated and
well-documented in scientific literature, as well as those cataloged in reputable databases such as ClinVar.
Variants must also demonstrate a clear association with resistance to either chemotherapy or targeted
therapy (TKIs). Emphasizing the importance of nucleotide-level alterations, the search focused on
variants resulting from base changes, including both single nucleotide variants (SNVs) and multiple
nucleotide variants (MNVs). Conversely, exclusion criteria served to filter out novel variants lacking
sufficient research support and accessibility, as well as variants associated with resistance due to
mechanisms such as over/under-expression, RNA transcription (including micro-RNA) and DNA
amplification. Furthermore, the scope was restricted to somatic mutations, excluding germline variations
associated with inherited resistance.

Data Search & Filtering:

To identify drug-resistant genes, a systematic approach was employed using Pubmed and Google Scholar
as primary sources. An initial search was conducted, employing filters and relevant keywords to identify
literature reviews exploring potential drug-resistant genes. Subsequently, an initial screening was
performed, focusing on abstracts, introductions, and conclusions to identify potential candidates. Genes
that were referenced across multiple studies were taken note of as promising contenders for drug
resistance. Following that, a full-text screening was conducted, analyzing the mechanisms of drug
resistance. Genes employing mechanisms such as over/under expression, amplification, or RNA
transcription (including micro-RNAs) to confer drug resistance were excluded. Additionally, those
imparting resistance to drugs beyond targeted therapies and chemotherapies were also eliminated from
consideration. To determine novelty, the sequences were cross-referenced against Clinvar?! and Genbank
to verify pathogenic response; those absent from either database were classified as novel variants and
excluded from the study. Prior to data entry, the final sequences underwent another round of screening,
adhering to the aforementioned procedure. Typically, data searches and filtering processes involve
multiple assessors to minimize the risk of bias. However, as the screening process was conducted by a
single reviewer, multiple screenings were performed to reduce the likelihood of erroneous exclusions or
inclusions.

Data Extraction:

Following the filtering process, genomic data was entered into a Google spreadsheet. Extracted
information included general details, including the gene name, specific mutation, rs—ID; characteristics,



including variant type (SNV, MNV) and drug resistance; genomic coordinates, including chromosomal,
base pair, and protein position; as well as mutation details, including original and mutated nucleotides,
amino acid change, and molecular consequence. It was also noted if specific drug classes targeted the
given gene if applicable.

Computer Model:

The methodology for the identification of potential chemoresistance markers in patient tumour genomes
was implemented using the Python programming language, leveraging the BioPython library!® for
genomic processing and analysis. Raw gene data sourced from ClinVar was formatted in FASTA files for
computational processing.

Sequence Alignment and Mutation Detection

Sequence alignment and mutation detection are pivotal processes conducted using the Biopython library.
Global pairwise alignment is used to align reference and patient sequences. Due to the large size of the
sequences, a chunking approach is adopted. Sequences are segmented into manageable chunks for
alignment and mutation detection. Through iterative examination of aligned sequences, mutations such as
mismatches and gaps are identified. Detected mutations are cataloged and subsequently analyzed to
discern their implications in cancer biology.

Sequence Comparison and Nucleotide Detection

To detect mutation, a direct comparison of nucleotide sequences between reference and patient samples is
performed. This process enables the detection of mutations by scrutinizing differences in nucleotide
composition. By systematically analyzing nucleotide variations, mutations indicative of cancer-associated
genomic alterations are identified. The molecular consequences of detected mutations are characterized,
as well as potential mechanisms of drug resistance.

Sequence Handling and Input

The methodology entails retrieving reference and patient genomic sequences through FASTA files from
Clinvar. Given the large size of the sequences, a chunking strategy is employed to facilitate processing.
Sequences are divided into smaller, manageable chunks for alignment and comparison. Standardization of
sequence lengths within each chunk is imperative to ensure consistency in alignment and comparison
procedures. Additionally, reverse complementation of sequences is applied to capture mutations present
on complementary DNA strands (ref. Mechanisms of Drug Resistance)

User Interaction

User interaction is facilitated through a user prompt to specify the gene of interest for mutation testing.
Input validation mechanisms are employed to ensure the accuracy of gene selection, thereby optimizing
the mutation detection process. The algorithm produced comprehensive reports detailing mutations and
predicted drug-resistant markers. Output data included the gene name; mutation name; position;
nucleotide base change; variant type; amino acid change; molecular consequence; and drug resistance.

Results:

Mechanisms of Drug Resistance: *'®

From the data search and filtering process (ref. Research Methods), several key genes were identified as
strong candidates for drug resistance: EGFR variants T790M, C797S, and D761Y; ALK variants G1202R
and L115R; MET variants Y1230C and D1288N; NTRK1 G595R; KRAS G12C, and TP53 R173H. Of
these, EGFR, MET and NTRK1 are located on the plus (coding) strand, and TP53, ALK, and KRAS are
located on the minus (non-coding). When gene sequencing, the orientation of the strands is crucial; to
analyze genes on the minus strand, it is necessary to obtain the reverse complementary sequence before
analysis. The majority of these variants are a result of a single-nucleotide polymorphism (SNPs), and



confer resistance to targeted therapies, specifically first/second-generation kinase inhibitors; the only
exception lies in P53 R173H, which displays chemoresistance.

Table 1. Resistant gene mutations of approved cancer therapies

Gene Name Target Drugs Clinically Used Drug-Resistant Mechanisms
EGFR Type I/II EGFR inhibitors: EGFR T790M
Gefitinib, erlotinib, afatinib,
dacomitinib, icotinib, osmertinib | EGFR C797S
EGFR D716Y
ALK Type I/I1 ALK TKI: crizotinib, ALK G1202R
ceritinib, brigatinib, alectinib
ALK L1152R
MET Type I MET TKI: crizotinib, MET Y1230C
savolitinib, capmatinib
MET DI1288N
NTRK1 Larotrectinib, entrectinib NTRK1 G595R
KRAS Sotrasib KRAS G12C
TP53 Doxorubicin, cisplatin, TP53 R173H
5-fluorouracil

EGFR mutations inhibit drug response in NSCLC patients undergoing targeted therapy with TKIs.
Notable the T790M mutation renders resistance to first and second-generation EGFR TKIs including
gefitinib, erlotinib, and afatinib. The T790M mutation enhances the ATP-binding affinity of EGFR,
reducing the efficacy of reversible EGFR TKIs and leading to treatment resistance. Similarly, the C797S
mutation confers resistance to both generation TKIs, namely osmertinib, through steric hindrance,
blocking the covalent binding of the drug. The D761Y mutation, though less common in clinical settings,
is positioned adjacent to residues crucial for forming a salt bridge, facilitating interaction with a- and
B-phosphates in ATP binding. This mutation has been linked to acquired resistance to second-generation
EGFR inhibitors.

ALK mutations G1202R and L115R emerge as leading resistant-inducing mutations, characterized by
their disruption of the ALK kinase domain. The ALK G1202R mutation undermines the efficacy of first
and second-generation ALK TKIs, such as crizotinib, ceritinib, alectinib, and brigatinib, by altering the
ATP-binding pocket of the ALK domain, impeding optimal drug-receptor interactions. Conversely, the
ALK L115R mutation disrupts the structural integrity of the ALK kinase domain, particularly proximal to
the ATP-binding site, thereby compromising the binding affinity between ALK TKIs and the ALK
protein.

MET mutations Y1230C and D1288N, located within the MET kinase domain, induce constitutive
activation of MET signalling by altering the conformation of the kinase domain, promoting continuous
downstream signalling pathways crucial for cell proliferation and survival. Moreover, cancer cells bearing
Y 1230C and D1288N mutations exhibit reduced sensitivity to MET inhibitors, namely Type I TKIs.
Furthermore, activation of bypass signalling pathways, including upregulation of alternative receptor



tyrosine kinases and downstream effectors, enables cancer cells to sustain growth and survival
independent of MET inhibition.

The NTRK1 G595R mutation can confer resistance to targeted therapies through mechanisms rooted in its
catalytic domain. This mutation hinders inhibitor binding and potentially augments catalytic function by
altering the kinetics of ATP binding. By decreasing the KM for ATP, these mutations intensify the
competition between ATP and inhibitor binding, thereby diminishing the effectiveness of targeted
therapies designed to disrupt kinase activity. Consequently, cancer cells harbouring the NTRK1 G595R
mutation demonstrate a reduced susceptibility to inhibition by NTRK inhibitors, namely larotrectinib and
entrectinib.

The KRAS G12C mutation induces a structural modification in the KRAS protein, trapping it in a
perpetually active state bound to GTP. As a consequence, downstream signalling pathways crucial for cell
proliferation and survival, notably the RAF-MEK-ERK and PI3K-AKT pathways, undergo sustained
activation. The RAF-MEK-ERK pathway plays a pivotal role in regulating cell growth, differentiation,
and survival by modulating the activity of transcription factors; simultaneously, the PI3K-AKT pathway
controls various cellular processes, including metabolism, protein synthesis, and cell survival. The
persistent activation of these signalling cascades renders cancer cells housing the KRAS mutation less
reliant on external growth signals, and renders them resistant to targeted therapies like sotrasib.

TP53, which encodes the p53 transcription factor, is the most frequently altered gene across human
tumours. Among its various mutations, TP53 R175H stands out as a significant contributor to
chemoresistance in lung carcinoma cells. The mutation promotes the upregulation of miR128-2 through
direct binding to the promoter region of its host gene ARPP21. Consequently, miR128-2 suppresses E2F5
expression, thereby reducing the levels of the downstream target gene p21, which exerts an antiapoptotic
effect. This miR128-2/E2F5/p21 axis serves as a critical mechanism underlying the resistance of lung
carcinoma cells to conventional chemotherapy agents like doxorubicin, cisplatin, and 5-fluorouracil.

Computer Algorithm:

Figure 1. Drug-Resistance Detection Flowchart
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Figure 1 denotes the procedural framework of the algorithm designed for the identification of
drug-resistant mutations. Initially, the algorithm prompts the user to select the gene of interest from a
predetermined list (EGFR, MET, NTRK1, ALK, KRAS, or TP53). Upon input, if the gene belongs to the
former three, the algorithm requests the user to provide the patient sequence in a FASTA*! format.
Conversely, for genes falling within the latter three categories, the algorithm requests the patient sequence



and computes the reverse complement of both the patient and reference strands, due to the gene's
localization on the minus strand. Failure to provide a valid gene name results in an error message,
prompting the user to re-enter the information. After gene selection and sequence acquisition, the
algorithm proceeds with a global pair-wise alignment of the patient and reference sequences, identifying
gaps indicative of nucleotide mismatches. It then evaluates individual nucleotides at each position,
detecting discrepancies between the sequences. Following this comparative analysis, mutations are
cross-referenced against a database housing the positional and nucleotide alterations associated with
drug-resistant mutations. Upon mutation analysis, the algorithm presents distinct outcomes: if no
mutations are detected, the algorithm outputs "no mutation detected"; in case of non-drug resistant
mutations, it outputs the position and nucleotide change detected; and upon verification of drug-resistant
mutations, the algorithm issues a warning regarding drug resistance, accompanied by detailed information
encompassing mutation name, classification, nucleotide variation, amino acid substitution, molecular
consequences, and drug resistance implications.

The algorithm was evaluated through manual manipulation of genetic data. While publicly available gene
databases exist, they lack the requisite specificity for the targeted genes under investigation. Moreover,
these databases lack samples with confirmed chemoresistance, necessitating manual nucleotide changes to
verify the functionality and accuracy of the code. Additionally, the testing was constrained to TP53 due to
computation limitations; as the other genes are quite large, the algorithm produces a memory error when
processing. Three ‘patient sequences’ were tested: the first with no mutation, the second with a non-drug
resistant mutation, and the third with a verified drug-resistant modification. The patient sequences were
made by copying the reference genome, and making appropriate alterations.

For the first phase of testing, the ‘patient sequence’ received no alterations from the original genome. As
such, the following output is given:

Enter the gene you want to test (EGFR, BRAF, NTRKI, MET, ALK, KRAS, or P53): p53
No mutations were detected.

In the second phase of testing, several modifications were made, none of which conferred drug resistance.
For instance, one modification changed the final nucleotide from Adenine (A) to Guanine (G); taking the
reverse and complement of the sequence, the modification reads from Thymine (T) to Cytosine (C) at
position 1. This is not identified as a drug-resistant mutation, and prints as such:

Enter the gene you want to test (EGFR, BRAF, NTRKI, MET, ALK, KRAS, or P53): p53
Modification at position 1: Reference T - Patient C

Multiple mutation detections were also tested, none of which conferred drug resistance. For instance, one
modification changed the final nucleotide from Adenine (A) to Guanine (G), and the second-last pair
from Cytosine (C) to Adenine (A); taking the reverse and complement, the modification reads from
Thymine (T) to Cytosine (C) at position 1, and Guanine (G) to Thymine (T) at position two. It prints as
such:

Enter the gene you want to test (EGFR, BRAF, NTRKI, MET, ALK, KRAS, or P53): p53

Modification at position 1: Reference T - Patient C

Modification at position 2: Reference G - Patient T

In the final phase of testing, the algorithm was tested to detect chemoresistant mutations. Due to



processing size (ref. Discussion), only TP53 R175H could be tested, which produced the following
output:
Chemoresistant mutation detected at index 6, 666.

Variant Name: P53 R173H. Variant Type: SNV.
Mutation: C->T.
Amino Acid Change: Arginine -> Histamine.
Molecular Consequence: Missense Variant.
Drug Resistance: Doxorubicin, cisplatin, 5-fluorouracil.
Note: Highly pathogenic mutation. Consult doctor.

As such, the algorithm has proven to be successful, with certain limitations to be mentioned in the
Discussion section.

Discussion:

To the author’s knowledge, this is the first attempt at a Python-based diagnostic model for drug-resistant
diagnosis. The algorithm’s strengths lie in its ability to streamline processes for physicians, offering a
more accessible approach to genetic mutation scanning compared to traditional methods involving manual
analysis. Moreover, the algorithm's cost-effectiveness is a significant advantage, as it incorporates
hard-coded data, thereby reducing the financial burdens associated with targeted therapies and
personalized medicine. Additionally, the model's efficiency is commendable, particularly in the context of
cancer progression, where timely detection is critical. These developments are particularly pertinent given
that less than one-fifth of NSCLC patients survive beyond the 5-year mark, often due to late diagnoses of
drug resistance mechanisms. By simplifying the process of inputting genetic information and receiving
rapid analysis, the model contributes to improved patient care outcomes.

The project faced several limitations that warrant discussion. Firstly, the diagnostic model's coverage was
limited to Single/Multi-Nucleotide Variants (SNV/MNVs), excluding other mutation types such as
insertions/deletions, and duplications, as well as mechanisms inducing overexpression and
underexpression. Broadening the model's scope to encompass these variants could enhance its clinical
relevance and utility. Additionally, due to memory and storage constraints within the operating system,
only the TP53 gene could be effectively tested. Future research may benefit from enhanced computing
systems to facilitate comprehensive gene testing. Ethical considerations surrounding genetic data handling
were also acknowledged, emphasizing the importance of transparent and ethically responsible screening
practices. However, since the sequences required for analysis constitute specific segments of tumour
DNA, which is already practiced routinely in hospitals, the sequencing methods utilized are familiar and
ethically sound. As such, future steps for this project include: (1) refining it to suit different mechanisms
conferring drug resistance, (2) upgrading the operating system to work on larger sequences, and, (3) if
used in clinical settings, safeguarding patient rights and protecting their genetic data.

Conclusion:

This paper presents a novel Python-based diagnostic model designed for the detection of drug resistance
in non-small cell lung cancer (NSCLC) and has successfully developed and tested a prototype. With
further refinement and ethical considerations, this innovation has the potential to transform the field of
oncology and enhance patient survival rates for the disease.
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